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Abstract
As ecological data are usually analysed at a scale different from the one at which the process of interest

operates, interpretations can be confusing and controversial. For example, hypothesised differences between

species do not operate at the species level, but concern individuals responding to environmental variation,

including competition with neighbours. Aggregated data from many individuals subject to spatio-temporal

variation are used to produce species-level averages, which marginalise away the relevant (process-level) scale.

Paradoxically, the higher the dimensionality, the more ways there are to differ, yet the more species appear the

same. The aggregate becomes increasingly irrelevant and misleading. Standard analyses can make species look

the same, reverse species rankings along niche axes, make the surprising prediction that a species decreases

in abundance when a competitor is removed from a model, or simply preclude parameter estimation.

Aggregation explains why niche differences hidden at the species level become apparent upon disaggregation

to the individual level, why models suggest that individual-level variation has a minor impact on diversity

when disaggregation shows it to be important, and why literature-based synthesis can be unfruitful. We show

how to identify when aggregation is the problem, where it has caused controversy, and propose three ways to

address it.
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INTRODUCTION

The processes that control biodiversity operate at a different scale

from most of the models and data used to study them. Species do not

compete, individuals do. Species do not respond to climate,

individuals respond to weather. The fact that important mechanisms

operate on individuals does not mean that only individual-level data

provide insight. Some processes operate and thus should be studied at

coarse scales (e.g. atmospheric circulation). Highly aggregated

variables at coarse spatio-temporal scales contribute perspectives that

could not have been obtained from experiments on individuals

(MacArthur 1972; Brown & Maurer 1989; the volume edited by

Ricklefs & Jenkins 2011 is an important recent review). But the critical

scales for a process can be overlooked for decades in scientific

debates, as efforts to understand and predict biodiversity still rely

heavily on highly aggregated data and models, often without

consideration of how aggregation itself can preclude further progress.

For example: �How do many late successional species coexist?�
Decades ago, ecologists could explain changes in aggregate functional

types over succession (e.g. shade-intolerant to shade-tolerant species)

and accumulation of aggregate biomass. Despite proliferation of data

sets and efficient algorithms, confident predictions still do not go

much beyond aggregate biomass and a few functional types, i.e.

aggregates of individuals responding to spatially and temporally

aggregated variables. Or: �How will longer growing seasons affect

species distributions given that competition for reduced moisture

depends on moisture availability?� Climate change predictions are still

dominated by spatial calibration of highly aggregated variables –

species distributions and regional climate. And: �Where are all the

niches in communities that appear to be dominated by only a few

limiting resources?� Still, no models generate high diversity of

competing species, unless each is explicitly guaranteed its own niche.

Quantifying the strength of species interactions is a research priority

(Agrawal et al. 2007; Novak et al. 2011), and it is studied with models

that assume that species rather than the individuals interact. Aggregate

species-abundance and species-area distributions do not discriminate

between coexistence mechanisms (Nee et al. 1991; McGill 2003; Clark

2011; Warren et al. 2011), but they remain a favorite for testing theory.

Parameter estimates for the most popular models for aggregate

population growth (matrix models and integral projection models –

IPMs) are usually not constrained by data on population growth

(S. Ghosh, A. Gelfand, J.S. Clark and K. Zhu, unpublished data).

Studying the scale of interest, rather than the process that controls

it, introduces aggregation problems, like the �ecological fallacy�
recognised in statistics and the social sciences (Bickel et al. 1975;

Scheiner et al. 2000; Clark 2003; Ibanez et al. 2006). This term refers to

the fact that group-level data can hide and misrepresent individual

behaviour. These disciplines recognise that inference about a

relationship or process has to derive from information at the scale

where it operates or risk aggregation problems (Wakefield & Salway

2001). Typically, individual organisms are not of interest, but that is

the scale where competition and important responses to weather

occur. Global warming renewed interest in how statistics on weather

(climate) relate to statistics on organisms (species abundance). The

aggregate statistics shed light on global patterns of climate, adaptation

and biogeography. However, the numbers and identities of species
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vulnerable to climate change depend on individuals responding to

weather in a competitive setting. Important attributes of weather and

its effects on competing individuals do not survive the data and model

aggregation used to study them. They can be fundamentally

misrepresented in aggregate data, as when a species appears negatively

correlated with moisture due to the effects of moisture on a natural

enemy, host plant, or competitor, or the variation that controls

responses and interactions are lost in the averaging. Factors that

determine vulnerability and the aggregate outcome may not be

interpretable from or predicted by the aggregate.

In studies of biodiversity, aggregation affects interpretations when

(A) observations obtained from individual organisms are used to

obtain species- or community-level summaries, which then become

the basis for interpretation, and (B) when data on a species are

abstracted from the full community, analysed independently, and then

used to predict properties of ecological communities. Approach A

entails aggregating experiments and measurements on individuals to

produce estimates of parameters and traits for a species (Clark et al.

1999; Reich et al. 1999; Bolnick et al. 2003; Rozendaal et al. 2006;

Shipley et al. 2006; Westoby & Wright 2006; Ackerly & Cornwell 2007;

Messier et al. 2010). Approach B entails fitting models or conducting

experiments independently for one or a few species, then using the

independently fitted models, for example, to predict diversity, i.e. the

aggregate behaviour. Niche models (Peterson et al. 2002; Guisan &

Thuiller 2005; Thuiller et al. 2005; Levinsky et al. 2007; Buckley et al.

2010), invasion experiments (Pathikonda et al. 2008; Pyšek et al. 2008)

and dynamic simulations based on parameter values culled from

the literature are examples where analyses of individual species are the

basis for predicting community response. In B, the relationship

between a species distribution and climate or competition with an

invader is conditional, depending on the context of observations, a

context that is not carried forward when results from individual

species are extrapolated to community-level predictions. For example,

there is no reason to expect that tree abundance predictions based on

niche models should even predict a closed canopy (fully occupied)

forest (see Diversity prediction based on independently modelled

species). Aggregation and abstraction change relationships in ways

that can make species look the same, reverse species rankings along

niche axes, lead to the surprising prediction that a species decreases in

abundance when a competitor is removed (see Diversity prediction

based on independently modelled species), or simply preclude

parameter estimation. Niche differences that are hidden at the species

level (Condit et al. 2006; Wiegand et al. 2007) become apparent upon

disaggregation to the individual level (Clark 2010). The inevitable

aggregation that comes with synthesis of published literature often is

not directly relevant to the scale of the process of interest.

Where possible, the ideal solution is often to �analyse, then

aggregate�, rather than �analyse the aggregate�; this may not be

possible, but more often, the advantages can be simply unrecognised.

Ecologists have studied the demographic responses of individuals for

a long time, but the species-level parameters estimated in these studies

aggregate over the variation in individual responses. The individual

variation is available and contains critical information, but only the

aggregate is quantified. This is a natural tendency, given that we care

about species, not individuals. However, the demonstrations that

competition is in fact concentrated within, rather than between,

species (Clark 2010), and the differential vulnerability of species to

climate change (Clark et al. 2011) came from analysis of the individual-

scale variation. In these cases, analysis of individual level variation was

followed by aggregation to the species level of interest. The approach

is complementary to, but not the same as, individual-based modelling

(IBM), the tracking of individuals in forward simulation models

(DeAngelis & Mooij 2005). Individuals in IBMs usually have identical

parameter values; our focus is on the missed opportunity that comes

from ignoring the joint distribution of individuals when learning about

their responses. We demonstrate how aggregation causes confusion

and why it underlies debates in ecology, and we provide options for

addressing problems caused by aggregation.

The terms �aggregate� and �marginalise� are related, sometimes used

interchangeably, but they have distinct meanings. �Aggregation�
describes when observations (e.g. a point pattern in Fig. 1a) are

summarised by attributes of the group or by models that apply to

group characteristics. �Marginalisation� typically refers to distributions

or models of distributions. As an example, consider observations or a

model of them in dimensions x and y. The joint distribution is

�disaggregated�, consisting of a point pattern (xi, yi) for individuals

i = 1, …, n (Fig. 1a) or a density function p(x, y) (Fig. 1b). Aggregation

occurs when objects that occupy a high dimensional space are

(d) Marginal densities

(a) Joint distribution of data

(c) Aggregate, means, and CIs

(f) Conditional densities(e) Disaggregated data

(b) Parametric joint densities

y
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Figure 1 Point pattern (left) and density (right) for two species plotted on axes x

(e.g. light) and y (e.g. soil moisture). The joint distribution of observations in (a) and

parametric distributions in (b) show species differences. Aggregate and marginal

densities (c, d) show the tendency for brown to occur at higher levels of both x and

y. The standard technique of projecting marginal densities as crosshairs in (c) and

(d) suggests broad species overlap and promotes the interpretation that the brown

species occurs at higher levels of x and y. Conditional densities (e, f) show

separation and the blue species to have the larger mean response.
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projected on fewer dimensions or they are summarised by a mean

value. Data aggregation occurs when dimensions are ignored to focus

on xi or yi, rather than on (xi, yi) (Fig. 1c). Marginalising a model

involves integration or summation (Fig. 1d). �Stratification� (Fig. 1e)

and �conditioning� (Fig. 1f) refer respectively to data and models when

interest concerns a response in one dimension, given the response in

another. Once data have been aggregated, disaggregation may not be

possible.

A closer look at Fig. 1 reveals an aggregation problem. Brown and

blue can represent two species, both of which respond to light and

moisture, labelled x and y. Individuals constitute a point pattern in

Fig. 1a, summarised by a model in Fig. 1b. On average, the brown

species responds at higher levels of both (Fig. 1c,d). However, at any

given moisture level, the blue species responds at higher average light

levels (conditionals in Fig. 1e,f). This is an example of Simpson�s
Paradox, where the species aggregate view leads to a conclusion

different from one based the individuals (Bickel et al. 1975). In Fig. 1,

the conditional relationship is available at the disaggregated scale.

Aggregation caused the loss of information (distributions hardly

overlap in Fig. 1a,b, but hardly differ in Fig. 1c,d), and qualitatively

changed their relationship (reversal from Fig. 1c–e, d–f). Said another

way, we could not infer the individual-scale process (e.g. competition)

from the aggregate response. The aggregate pattern is generated by

processes operating at the individual scale, but appears to misrepre-

sent them. Aggregation problems are not restricted to particular types

of dimensions, including geographical location, time, trait space,

resource abundance or utilisation, and physiological or demographic

responses. The loss of information (Wakefield & Shaddick 2005)

results from the fact that it is difficult or impossible to recover a joint

distribution from marginals (Gelman & Speed 1993; King 1997;

Nelsen 1999), unless there is the possibility of disaggregation.

HOW AGGREGATION PROBLEMS ARISE

There are not always solutions to the aggregation problem, but the

pervasiveness of the problem, common pitfalls and options that could

be used to address it can benefit from a broader recognition. We begin

with a summary of key elements, followed by ways to identify when

aggregation has occurred and how to accommodate it. We discuss why

it becomes increasingly important as dimensionality increases.

We discuss examples of three options, including (1) disaggregating

when you can, (2) disaggregation how you can or (3) marginalising the

model to accommodate the aggregation in data. We then discuss why

independent analysis of species represents a conditional model that

can lead to misleading predictions at the community scale. Finally, we

discuss advantages of data collection and analysis at the disaggregated

scale where critical processes occur, followed by aggregation to the

scale of interest.

Aggregating data, marginalising a model

Aggregating data or marginalising a model can cause information loss

and change conclusions. For clarity, we illustrate the problem with just

two dimensions, which might describe attributes of species (traits,

demographic rates), the environment to which they respond (climate,

resources, natural enemies), or even more complex data such as the

distribution of these quantities in space, time, frequency and so forth.

To introduce theory, we use a simple example. We examine whether

beech occupies wetter or drier sites than red oak. The Forest

Inventory and Analysis data of USDA Forest Service provide an

opportunity to analyse relationships between species distributions and

climate (Prasad et al. 2007; Canham & Thomas 2010). Seedlings of

both species plotted against winter temperature T and annual

precipitation P for plots i = 1, …, n constitute a point pattern p(Pi,

Ti). This is an empirical distribution of observations. A model could

be fitted to this point pattern having joint density

p P ; Tð Þ ¼ p P Tjð Þp Tð Þ ¼ p T Pjð Þp Pð Þ ð1Þ
This joint density is factored on the right-hand side into a

conditional and a marginal distribution. A conditional distribution of

P is taken at a slice through the joint distribution at a specific value T ¢
(Fig. 2c,d). These are shown for the fitted distribution, but could also

be constructed for the point pattern of observations, by stratifying as

in Fig. 1a,e.

The point pattern could be aggregated by ignoring T to produce a

point pattern in one dimension p(Pi). This data aggregation could be

accommodated by marginalising the joint density over dimension T

(Fig. 2e). Rather than slice through p(P, T ) at a value T ¢, we now

integrate away the variable T,

pðPÞ ¼
Z

pðP ; T ÞdT ¼
Z

pðP jT ÞpðT ÞdT ð3aÞ

If T takes discrete values, this marginal is obtained by summation,

pðPÞ ¼
X

T

p P jTð Þp Tð Þ ð3bÞ

This is a mixture of two variables, obtained by integrating over the

variation in P that occurs across the full range of temperatures. The

marginal distribution of P is at least as variable as any conditional

distribution of P, because it is not restricted to the variation observed

at a specific temperature T ¢. Not only does the variation increase from

conditional to marginal, but the rank of species mean values reverses

from marginal in Fig. 2e to conditional in Fig. 2c. The answer to the

original question (which species occupies the wetter sites?) is, in

aggregate, beech. This is the answer we obtain if we ignore

temperature. Conditional on warm winters, the answer is red oak.

One could object to the example in Fig. 2 on the ground that species

were selected specifically to show a paradox that might rarely be

observed. These species were not selected arbitrarily, but we did not

have to look hard for examples. There is nothing strange about the

distributions (the fitted models are Gaussian), and the relationships

apply to both fitted and the empirical distributions. The information loss

that comes with aggregation is general. Conditioning and aggregating are

a part of all field studies and most modelling studies. All observations are

conditional, depending on the setting in which they were obtained.

On the other hand, all observations marginalise over variation during the

study (see Options for addressing the aggregation problem).

It is worth mentioning that the large literature on �scaling� (Weins

1989; Levin 1992; Underwood et al. 2005) represents part of a broader

challenge we consider. Aggregation can involve Jensen�s inequality,

perhaps the most commonly discussed �scaling problem� in ecology

(Melbourne and Chesson 2005; Ruel & Ayres 1999), but it is more

general. Jensen�s inequality concerns error introduced when nonlinear

functions of stochastic variables are summarised by mean behaviour

(Flyvbjerg et al. 1993; Berec 2002). Aggregation is problematic

whether or not relationships are nonlinear. Relationships can be

linear, empirical point patterns (there is no function in Figs 1 and 2),

contingency tables (including only two classes as in Simpson 1951),

Review and Synthesis Individual-scale variation, species-scale differences 1275
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and classes can be nominal (e.g. political party, religion, race).

However, they all entail changing dimensionality and produce

misleading results whenever there are interactions with unobserved

variables (Wagner 1982).

Increasing dimensionality increases aggregation problems

Failure to find correlations between a few environmental variables and

species abundance often leads to the conclusion that species are

�neutral�. The apparent sameness is an aggregation problem, transpar-

ent in two dimensions (Figs 1 and 2), but progressively obscured with

increasing dimensionality. In just two dimensions, there are few ways in

which species that are similar marginally can differ jointly. When there

are many dimensions, the opposite is true. The probability, that species

overlapping in a few dimensions overlap jointly in, say, 10 dimensions,

is vanishingly small. There are just two expressions for a binary trait in

one dimension, but there are more than 1000 in 10 dimensions. Each

new dimension brings combinatorial complexity in the number of ways

objects differ. Marginalisation promotes the illusion of overlap and

distorts the relationships of interest. Many ecological processes

inherently operate at the individual scale (competition, disease,

response to weather). High dimensionality comes from the fact that

individuals are subjected to combinations of inputs (Clark 2010).

Aggregation is the reason why failure to find differences among species

is not evidence for sameness.

OPTIONS FOR ADDRESSING THE AGGREGATION PROBLEM

The most powerful solution to the aggregation problem is to analyse

at the disaggregated scale, then �aggregate� the results to the scale of

interest. Often, disaggregation can be difficult, but just as often the

opportunity is simply overlooked. Examples of options for addressing

the aggregation problem that follow depend on data and the scale at

which the process operates.
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Figure 2 Joint distributions for recruitment of two species in geographical space (a) and climate space for temperature T and precipitation P (b), with symbol size scaled as

density the Forest Inventory and Analysis data (Zhu et al. 2011). Rank reversals in climate space occur when moving from conditional distributions for warm (c) and cool (d)

climates [dashed lines in (b)], and marginally (e). Empirical distributions are shown in (a) and (b). Parametric (bivariate normal) distributions from (c) through (e).
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Option 1: Model at the disaggregated scale

The most direct solution to aggregation problems is to analyse at the

disaggregated scale, fully exploiting information contained in the joint

distribution. Consider the study of tradeoffs in traits or demographic

responses that could explain coexistence. Each species is treated as an

observation in trait space (e.g. Turnbull 1991; Kitajima 1994; Wright

2002; Baraloto et al. 2005; Seiwa 2007; Clark et al. 2010; Poorter et al.

2010) summarised as marginals in one dimension or as crosshairs in

two dimensions (Fig. 3). This approach is used to compare responses

to resources, such as growth in high light vs. survival in low light.

Some studies find evidence of this tradeoff, but others do not (Welden

et al. 1991; Walters & Reich 1996; Wright 2002; Baraloto et al. 2005;

Valladares & Niinemets 2008; Clark et al. 2010). Plots like Fig. 3 can

be misleading, suggesting joint distributions where there are only

marginals – the crosshairs contain no more information than densities

plotted along the margins. The joint relationship is available at the

individual level, but its value is rarely recognised or exploited.

Aggregation not only obscures mean differences, but also masks

responses to the environment in fitted models. For example,

physiological responses to light and CO2 determine succession,

species coexistence and responses to global change (Tilman 1988;

DeLucia & Thomas 2000; LaDeau & Clark 2006). Despite obvious

species differences in these responses (Fig. 4a), models fitted to long-

term species-level data provide a misleading view that these resources

are inconsequential and that different species respond to them in

essentially the same, weak fashion (Fig. 4b), certainly not with the

differences required for coexistence in competition models (Fig. 4c)

(Bazzaz 1979; Tilman 1988). Yet, these are just two of many

differences that are obvious at the physiological level, but hidden

when aggregated over individuals and over time (Fig. 4b).

The interpretation that species are the same is based on the overlap

in aggregate (Figs 3 and 4b). Responses g (photosynthetic rate or

seedling growth) in Fig. 4 depend on light (L) and CO2 (C ).

Figure 4b marginalises over the variables x that were not measured,

p g L;C ;Xjð Þ ¼
Z

X

p g L;C ; xjð Þp xð Þdx ð4aÞ

p(x) is the density of inputs x, which varied over a range of values X
during the study. Not only is x unknown, but so too is X – we do not

know what we are marginalising over, nor what we are conditioning

on. We do know that the higher the dimension of x (number of

variables affecting g) and the wider the range during the study X, the

broader the marginal distribution and, thus, the more overlap between

species. Increasing dimensionality and range degrade the fit as un-

known x increasingly smears over contributions from known L and C.

By contrast, short-term and tightly controlled experiments limit the

range of variation X to the conditions prevailing during a short time

and small area, call it X¢ (Fig. 4a comes from carefully selected

conditions). This conditional distribution

lim
X!X0

Z

X

p gjL;C ; xð ÞpðxÞdx

0
@

1
A! p gjL;C ;X0ð Þ ð4bÞ

shows species differences. The range of integration X (left side of

eqn 4b) becomes so small that the important conditional differences

between species (right side of eqn 4b) become evident. However,

there are many possible conditional distributions, one for each X¢.

Here, again is the dimensionality paradox: the more ways there are to

differ, the more they appear the same (the greater the overlap in

aggregate).

The wide 95% predictive intervals in Fig. 4b result primarily from

variation among individuals (Mohan et al. 2007). Despite the broad

overlap at the species level, the prediction intervals for individuals are

narrow. In other words, there is substantial information about

the response, once inference shifts from the species-level aggregate to
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Figure 3 Density plots for demographic rates of two tree species from the analysis

of Clark et al. (2010) broadly overlap, taken over individuals and years. Trait data are

typically analysed based on such marginal relationships. Crosshairs for combina-

tions locate means and span 95% of the estimates.
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the individuals that make up that species. An example of how to

quantify species differences at the individual scale is available in

J.S. Clark, B. Soltoff, A. Powell & Q. Read (unpublished data), who

examined whether or not there is evidence for the negative

correlations between understory and gap responses of species required

for coexistence in colonisation–competition tradeoff models. They

found that all species grow faster in gaps than in the understory on

average, but that they differ in their joint distributions of responses to

understory and gap. We summarise how the understory ⁄ gap inputs

can be disaggregated to a joint distribution of responses for

individuals of each species and how those distributions relate to

unobserved variables.

Consider a bivariate Gaussian model for observations of [u, g]is,t, the

growth response vector for individual i of species s at time t,

N2ð½u; g�is;t jas ;Rs :Þ ð5Þ

Examples of bivariate Gaussian distributions are shown in Figs 1b

and 5b. The bivariate response in eqn 5 consists of ui,t, the understory

growth rate and gi,t, the change in annual growth rate from gap

formation (positive or negative). The first parameter to the right of the

vertical bar is the vector of two mean values as. The second parameter

is the 2 · 2 covariance matrix of residuals Rs. Of course, many

variables affect the response that are unmeasured. We represent them

here with a vector x. The question is: How can we learn about the

contribution of x?

Conditioning on individuals can provide some insight into the role

of hidden variables. At minimum, the covariance in eqn 5 contains

contributions from observation error Es and individual differences Vs,

Rs ¼ Es þVs

For heuristic purposes, the understory ⁄ gap mean response vector

for an individual ais in eqn 5 can be expressed in terms of the variables
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trees from the same sites (b) show little effect of either variable and imperceptible species differences (solid lines include mean and 95% of individual responses for ambient

(solid lines) and elevated (dashed lines) CO2 (from Mohan et al. 2007). These species coexist throughout eastern North American forests, but aggregated relationships in (b) do

not show the relationships required if coexistence depends on partitioning light (c).
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that affect it, say N2 ais xibs ;Hsjð Þ. The mean vector from eqn 5 now

has a mean vector of its own, determined by a length-k vector xi, and

parameters in the k · 2 matrix bs. For example, if the light and

moisture levels vary within gaps and understory, and these variables

are not measured, then one of the x�s could be light and another could

be moisture. Covariance matrix Hs takes up variation in ais not

accounted for by the mean due to the model simplicity and missing

sources of variation (e.g. genetic). The distribution of responses

depends not only on what these inputs are but also on their

distribution within the study p xð Þ ¼ Nk x l;Vxjð Þ. This distribution

for the inputs x has a length-k mean vector l and covariance matrix

Vx. By marginalising the model as in eqn 4a, eqn 5 can equivalently be

expressed as

½u; g�is;t � N2ðms ;Es þVsÞ ð6Þ

where

ms ¼ lbs

Vs ¼ Hs þ bT
s Vxbs

This alternative way of writing eqn 5 interprets the response in terms

of the mean vector l and covariance Vx of the hidden variables x, but

it does not help us identify those effects or determine if they are

meaningful. However, by conditioning on the individual, we can

reduce the overall variation while learning about the relationships

between responses across individuals. For individual i, we have the

density

pð½u; g�s;t jiÞ ¼ N2ð½u; g�s;t jms þ bis ;Rs :Þ ð7Þ

where ms has the definition from eqn 6, and the individual coefficient

vector is bis ¼ xi � lð Þbs . At the population scale, the distribution of

individual effects is now N2 bis 0;Vsjð Þ, with overall population

covariance reduced to Rs = Es. The individual effect bis includes

departure of xi from the mean vector l, as translated by the species

effect bs. This conditioning on individual i can result in a large

reduction in the residual variance in the error covariance Rs, because

much of the variation is associated with individuals (Clark et al. 2003;

Clark et al. 2010). Variance is reduced to Es because x varies at the

individual scale. This can be interpreted as a random effects model,

commonly applied to longitudinal studies of individuals (Clark et al.

2003).

The gain in understanding that comes from moving from eqns 5 to

7 depends on whether or not there is individual variation and how

long individuals are studied. Contained within eqn 7 is a joint

distribution of individuals

N2 ais ms ;Vsjð Þ ð8Þ
where Vs describes tendency for responses within the vector ais to

covary among individuals, within the species. Equation 5 is a model

for observations where no attention is paid to which individual they

came from, whereas eqn 7 has structure. If there is no variation

among individuals, or they are not tracked over time, then little is

gained by conditioning on individuals. From eqn 6, it is clear that

covariances can be positive or negative, depending not only on the

covariance structure of Hs, but also on the environmental variables Vx

and on how environmental variation is translated by each species, bs.

Equation 8 is useful when the process of interest operates at the

individual scale, as it does here (individuals competing in the under-

story and gaps).

A standard comparison of species is a plot of mean values in as

from eqn 5 for understory and gap responses for species in aggregate

(Fig. 5a), fitted as a Bayesian hierarchical model (Clark et al.,

unpublished data). The positive correlation is not the pattern that

would promote coexistence in models – species that grow fast on

average in the understory also respond most on average to gaps.

However, the marginal mean values in Fig. 5a represent an aggregate

value for the entire species. They are not the important summary

because species do not compete. The conditional distributions

(Fig. 5c) are the relevant perspective, and they tell a different story –

species having individuals that respond most to gaps when growing

slowly in the understory are not the same as those that respond most

to gaps when growing more rapidly in the understory. The example

distributions in Fig. 5b show that the fastest growing individuals in the
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understory do not show the largest growth responses for either

species. Although Morus grows more slowly on average than

Liriodendron in both settings, it shows a stronger response to gaps

when previously growing slowly in the understory (Fig. 5b). The

negative relationship in Fig. 5c does not in itself explain coexistence,

but demonstrates that there are ways to partition gaps that cannot be

inferred from the aggregate mean values. The joint density from eqn 8

shows the covariance structure contributed by Vs, much of which

comes from unobserved x and is different for each individual.

When a joint distribution of x is unavailable, there is often the

option to disaggregate by individual and time, i.e. not the joint

distribution we would prefer, but one that still provides insight. In the

foregoing example, inputs (gap vs. understory) were part of the

experimental design. Even where no inputs are observed, variation

between and within individuals (over time) can provide insight, despite

not being of primary interest, as discussed in the next section.

Option 2: Disaggregate how you can

Individuals can reveal species differences when variables responsible

for those differences are unobserved, exposing patterns in one

dimension (individual organisms) that assist inference in another

(competition for resources). Growth responses in Fig. 4b are

conditioned on mean annual light and CO2 but marginalise over

variation in moisture, temperature, nutrients, and infection statuses, to

name a few. When there are unobserved variables affecting dynamics

of individuals, disaggregation by individual and over time recovers

information. The joint distribution is high dimensional, including

three demographic states for every individual, every year (Fig. 6).

Despite its complexity, this joint distribution does not substitute for

knowledge of all relevant variables xi,t. For example, Fig. 5b tells us

about the joint distributions of individuals with respect to understory

and gap, but it does not tell us how variables such as light and

moisture regulate responses in understory and gap. We prefer to

disaggregate in terms of x, i.e. �define the niche� in terms of such

things as resources, but most of the important variables will not be

known. When that option is not available, disaggregating instead

by individual, state and time provides insight. Individuals are not the

objects of interest, but they have the right scale – growth and

reproduction of individuals as the environment varies in time.

The joint distribution of individuals, states and time preserves

dependence structure that results from unobserved xi,t (eqns 4b, 6 and

7). Let yi,t = (gi,t, fi,t, si,t) be a vector of states (growth, fecundity,

mortality risk) and {yi,t} the set of response vectors. Marginal

distributions describe aggregate variation in x encountered by all n

individuals over all T years,
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Figure 6 Posterior mean values for demographic rates of randomly sampled Liriodendron trees, each line tracking an individual over 7–19 years, with marginal densities at right.

Colours show low elevation Piedmont (blue) to high elevation northern hardwoods (orange) plots. The full posterior distribution shown along the right margins includes these

states for all individuals over all years (from the analysis of Clark et al. 2010).
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pðfyi;tgjL;C ;XÞ ¼
1

n

ZtþT

t

pðfyi;tgjfLi;t 0 ;Ci;t 0 ; xi;t 0 gÞ

pXðfxi;t 0 gÞdfxi;t 0 g

ð9Þ

(right margins of Fig. 6). The interpretation of overlap in Fig. 3

should not be that species are the same, but rather that there is

essentially no information. We cannot disaggregate by x (it is un-

known), but we can vastly reduce its range X, disaggregating instead

by individual and year.

The joint distribution of individuals, states and years shows how

each individual responded to the restricted variation it experienced

each year

p yi;t

� �
j Li;t ;Ci;t ; xi;t

� �� �
We are now marginalising only the variation in x that one individual

experienced in 1 year, rather than all variations experienced by all

individuals over all years. Marginalising over all individuals and years

(right side of Fig. 6) leads to the conclusion that species do not differ

(Mouillot et al. 2005; Condit et al. 2006). The standard interpretation of

a regression through the aggregate observations used to produce

Fig. 4b would be that growth is unresponsive to light and CO2 and

essentially the same for all species – both conclusions known to be

wrong (Fig. 4a). As the environment varies in space and time,

disaggregated observations can recover species differences that depend

on the joint response in many unmeasured dimensions. They can be

examined for correlation structure (Clark 2010). The differences

evident in correlation structure can be fitted to variables in x, such as

climate, light availability and soil moisture (Clark et al. 2011).

Option 3: Model the Aggregate

When data are more aggregated than the processes of interest, there

can be a third option, to marginalise the model itself. This means that

we integrate out (eqn 3a) or sum away (eqn 3b) sources of variation

that have contributed variation to observations. Models can be

constructed to provide inference on conditional relationships, despite

aggregated data. This option is not a substitute for disaggregated data,

but an acknowledgement that aggregation has occurred. In the first

example of this section, we point out how the marginalisation that is

needed to model aggregated data can be overlooked. In the second

example, we show how marginalising the model provides detailed

inference, because it properly represents the aggregated data, and

information may enter in multiple ways.

Aggregate data, disaggregated model

Ecologists use stage distributions to evaluate demography, where

classes are discrete (matrix models, Fig. 7a) or continuous (integrated

projection models or IPMs). The models are written at the population

scale, in terms of density for size classes, but they are unconstrained by

population size, fitted instead at a different scale, individual survival and

growth (Ghosh et al., unpublished data). Where fitted at the individual

scale, they are models of individuals, not population growth. At the

individual scale, parameters can be fitted independently of one another,

sacrificing knowledge of their relationships. Recent studies suggest that

parameters can be fitted together without individual level data, using

Bayesian approaches (Gross et al. 2002) or optimisation (Wielgus et al.

2008). Problems identifying parameters are attributed to the ways in

which parameters combine in models that project a distribution of

stages at time nt to time nt+1. However, the more important issue has not

been recognised, the fact that the joint distribution of (nt, nt+1) is

unknown (Fig. 7b), having been lost when individuals were aggregated

at time t and t + 1.

Consider a matrix model of m stages,

ntþ1 ¼ Ant

n1;tþ1 ¼
Xm

i¼1
ni;t fi i ¼ 1; . . . ;m; t ¼ 1; . . . ; T

with m · m matrix A containing coefficients aij, which describe

transition from stage j to stage i, a vector of abundances at time t, nt =

(n1,t , …, nm,t), and fi, the birth rate for stage i. Elements of A are

typically estimated independently.

A synthetic model could be used to estimate uncertainty in growth

(e.g. Gross 2002; Clark 2003), but there is a problem when

observations do not come from individuals. Consider the sequence

of marginal stage distributions over time n1, n2, … . In this example,

survivors from stage 1 at time t move to stage 2 at time t + 1, and

those in stage 2 at time t + 1 come either from stage 1 at time t (grow

and survive) or stage 2 at time t (already in stage 2, survive). If u

individuals come from stage 1 and v from stage 2, then n2,t+1 = u + v.

Based on observations at t and t + 1, we do not know how many

came from stage 1 or stage 2, only their sum, the marginal

p n2;tþ1 ¼ Suv

� �
¼ p u þ vð Þ ¼

X
u

pvðvjuÞpuðuÞ ¼
X

u

pv Suv � uð ÞpuðuÞ

ð10Þ
This is an example of eqn 3b. The summation is a convolution over

the ways in which u and v could combine to produce the number of

individuals in stage 2 at t + 1.

Complexity increases with the number of stages. For three stages

that could transition to stage 2, we have

pðn2;tþ1 ¼ SuvwÞ ¼ pðu þ v þ wÞ ¼
X

v

pw Suvw � vð Þ
X

u

pv v � uð Þpu uð Þ

So the problem is exploding, but it is still worse than this twofold

convolution, because the u individuals that move from stage 1 to 2

could not remain in stage 1. In other words, the stages are

interdependent in more complex ways. Even where applied properly,
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marginal distributions for years 1 and 2; the joint distribution p(n1, n2) cannot be

reconstructed from these aggregate data.
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the convolution does not substitute for the missing joint distribution,

it only acknowledges the aggregation. In other words, even when the

model is properly marginalised to accommodate data aggregation,

there is less information than would be available from the joint

distribution of individuals (Lavine et al. 2002).

Gross et al. (2002) make the important point that parameters in

matrix A are hard to identify. For example, transitions from stage 1

could involve two parameters,

a11 ¼ 1� g1ð Þs1

a21 ¼ g1s1

where g1 is the probability of growing out of stage 1, and s1 is probability

of survival. Parameters appear as products and thus can be difficult to

identify when fitted to aggregate data. Bayesian methods will not save

the situation, unless the prior is allowed to control everything.

The more important problem for parameter estimation is the fact

that the aggregation in observations is overlooked. Disaggregated data

from individuals that are followed over time allow simultaneous

inference on parameters because there is no convolution over the

possible ways in which many individuals could combine to yield an

aggregate distribution of stages. This longitudinal treatment of

individuals is standard practice in public health and increasingly in

ecological studies (e.g. capture–recapture methods). Knowledge of

which individuals moved between stages provides the joint distribu-

tion p(n1, n2, …) (Fig. 1a). The problem with fitting matrix models to

marginal distributions p(n1), p(n2), … comes from the fact that a model

with proper aggregation is complex, and information is lost when

moving from a joint distribution of individuals to the marginal

distributions of classes. Ghosh et al. (unpublished data) address the

more general aggregation issue for IPMs, the fact that they are fitted as

models for individuals, but they are projected forward as though they

were fitted to population growth data.

A marginalised model to accommodate aggregated data

Models based on conditional relationships often can be marginalised to

match the aggregation in data and used for productive inference. For

example, hypothesised negative density dependence occurs if compet-

itors suffer when locally abundant, benefit when rare, or both. This

self-regulation can be caused by natural enemies. Studies often look for

a decline in survival with increasing abundance of conspecifics (e.g.

Stoll & Newbery 2005; Petermann et al. 2008; Comita & Hubbell 2009;

Gonzalez et al. 2010). As field studies typically do not benefit from

knowledge of the factors responsible, observations of survival

marginalise over unmeasured variables. For example, tree seedlings

of many species benefit from soil moisture, as do the damping-off

pathogens that attack them (Martin & Loper 1999). Understanding the

role of potential pathogens requires conditional relationships, such as

pathogen incidence and infection impact on survival, given soil

moisture. Densities of survival probability aggregated over wet and dry

sites broadly overlap (Fig. 8a), hiding the conditional relationships

where self-regulation could be evident. A model can begin with the

conditional relationships of interest and then marginalise to match the

aggregation in data, thus providing inference on those conditional

relationships.

To illustrate how a model can specify and fit conditional

relationships where data represent marginal quantities, consider a

model for pathogen incidence P (typically known only if hosts are

obviously infected), infection of seedling hosts I (often unobserved)

and the survival S of infected (S|I = 1) and uninfected (S|I = 0) hosts

(Clark & Hersh 2009; Hersh et al. 2011). The environment E regulates

incidence and the effects of infection on host survival. The joint

distribution of events is factored,

p S ; I ; P jEð Þ ¼ p S jI ;Eð Þp I jPð Þp P jEð Þ ð11Þ

including how infection and environment affect host survival, infec-

tion if the pathogen is present, and how pathogen incidence depends

on the environment respectively. Unfortunately, data represent

aggregate quantities. If infection is detected, we have the most

informative conditional density for survival given infection

p S jI ¼ 1;Eð Þ ð12Þ
If infection is not detected, but the pathogen is present (known

from infection of neighbours), we have the aggregate quantity

p S P ¼ 1;Ejð Þ ¼
X

I¼0;1
p S I ;Ejð Þp I P ¼ 1jð Þ ð13Þ

(a)

(b)

(c)

Figure 8 (a) Survival probability p(S ) of Diospyros virginiana seedlings planted in sites

with high and low soil moisture. Densities marginalise over infection and incidence

of potential fungal pathogens. (b) The importance of infection in moist sites is

apparent from densities conditional on infection status (dashed lines), but hidden in

marginals. (c) The large impact of infection status becomes apparent in conditionals

[p(S|I = 1) vs. p(S|I = 0)], and further depends on knowledge of incidence, as

when there is no information on the fungus, p(S ), or information is limited to sites

where the fungus is present, P = 1, p(S|P = 1) (from analysis of Clark & Hersh

2009).
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Equation 13 is less informative than 12, because infection status is

unknown. If pathogen incidence is also unknown (e.g. there are no

neighbours or their infection status is unknown), information is

degraded further

P S jEð Þ ¼
X

P¼0;1

X
I¼0;1

p S jI ;Eð Þp I jPð Þp P jEð Þ ð14Þ

Not shown here is a detection model for infection. Even with this

knowledge, we still could not identify infection probability and

incidence using eqn 14 alone. Equation 14 represents a model that

properly marginalises over the unknown incidence and infection

status. Despite being �correct� (with respect to the degree of

aggregation in data), it does not help us infer the important

conditional relationships. However, each individual confers a different

level of information, represented by eqns 12, 13, or 14.

Together with informative priors on detection, the models for

different levels of aggregation (eqns 12–14) provide the conditional

relationships of interest (Clark & Hersh 2009). Host survival is

reduced by fungal infection under moist conditions, apparent from

comparison with the conditional distribution p S I ¼ 0;Ejð Þ (dashed

lines in Fig. 8b), but hidden in the marginalisation that gives p S Ejð Þ
(solid lines in Fig. 8b). Both host and fungus benefit from moisture.

For hosts on moist sites, the negative effect of infection may outweigh

the direct moisture benefit. Dashed lines in Fig. 8b show the survival

difference for infection-free hosts. Solid lines show no survival

difference when we aggregate over unknown infection status. The

effects of different levels of aggregation corresponding to eqns 12–14

in Fig. 8c show that information in field studies can vary dramatically,

depending on the degree of aggregation recognised.

These examples show how models are marginalised to match the

aggregation in data and demonstrate that they can provide valuable

inference. Even some of the most familiar types of studies (e.g. matrix

models) can overlook the underlying aggregation. Proper marginali-

sation adds complexity to models, and there is a limit to how much

can be learnt. On the other hand, information may enter at many

stages of a hierarchical model, thus allowing for inference when

information is sufficient.

There may be no options

The foregoing approaches cannot resolve all aggregation problems. In

many cases, ecological data contain little or no information at the

critical scale. For example, extensive plot arrays established for

periodic inventory (e.g. Fig. 2) contain limited information on the

effects of climate on annual demographic rates of trees, the scale

assumed in many forest stand simulators. It generally will not be

possible to disaggregate the multiyear demographic measurements to

annual values or to disaggregate the coarse-resolution climate data

to the scale where weather affects demography (individuals within

local competitive environments). Models properly marginalised to

match the aggregation in data will not provide inference at the

required scale if there is no information in aggregated data. Regional

climate data are relevant to climate experienced by an individual in the

study only to the extent that regional climate is correlated with the

weather that the individual experienced. The average demographic

response over a 5-year interval may not reflect the extreme years

during that interval that had the important effects on demography.

There is a large and expanding literature on the need to properly

match spatio-temporal reference in data and models (e.g. Banerjee

et al. 2004; Gelfand et al. 2006), but the mismatches are easy to

overlook in continental scale studies of climate change. This is an

aggregation problem, involving data at one scale and processes at

another.

DIVERSITY PREDICTION BASED ON INDEPENDENTLY

MODELLED SPECIES

Niche models are used to predict diversity based on calibration with

environmental variables (Kirilenko & Solomon 1998; Thomas et al.

2004; Thuiller et al. 2005; Prasad et al. 2007). Species are abstracted

from communities, fitted to climate variables, and then reassembled as

a biodiversity prediction. Niche modelling treats conditional distribu-

tions for individual species as though they were the joint distribution

for a community. Despite widespread recognition that species depend

on one another, there does not appear to be an articulation of why

modelling species independently could be problematic and to what

degree modelling species jointly could help. Here we are referring to

the species that are modelled as response variables. In some cases,

some species are treated as predictors of other species (e.g. Araújo &

Luoto 2007; Barbet-Massin & Jiguet 2011). The discussion that

follows concerns models for multiple species responding to physical

and biotic variables.

There are at least two considerations with abstracting data for

individual species followed by calibrating niche variables and

biodiversity prediction. The more obvious issue concerns the

unknown contribution of competition to current distributions

(Hutchinson 1961; Pearson & Dawson 2003; Ibanez et al. 2006;

Suttle et al. 2007; Clark et al. 2011). Data marginalise over competition

and all environmental variables not included in the model. In the

absence of information on competition, there is no obvious way to

gauge its impact on predictions. For example, how would competitors

expand following loss of chestnut in eastern North America (e.g.

McCormick & Platt 1980; Elliot & Swank 2008)?

A second less obvious issue concerns the fact that in the absence of

detailed environmental information, species provide the most

information about one another. As species are responding to many

of the same hidden variables, the best predictor of abundance can rely

on knowledge of other species. Consider a community of species

s = 1, …, S at locations j = 1, …, J. At a given location j, there is

dependence between species, because they compete (negative depen-

dence), and they react similarly to the environment (positive

dependence). As the joint distribution of environment ⁄ competition

effects is unavailable, the effect of competition cannot be disaggre-

gated. A comparison of two models that differ in how they treat

species dependence illustrates aggregation problems in both.

For transparency, consider modelling species with a GLM with

extra-Poisson (Gaussian) variation in the log link function,

YS

s¼1

YJ

j¼1

Pois asj jAjksj

� �

YS

s¼1

YJ

j¼1

N ln ksj jxjbs ; r
2
s

� � ð15Þ

asj is the number of individuals counted in a sample with effort (e.g.

plot area) Aj and ksj is the mean number of individuals per unit area, or

intensity, for species s in plot j. Input variables occupy xj, a length-k

vector of predictors, e.g. climate. Standard practice is to fit each
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species, construct predictive distributions and combine the maps that

result. A predictive distribution entails a scenario for x (e.g. a pre-

dicted climate), propagation of error in parameters and integration of

the first-stage Gaussian and second-stage Poisson variation (Clark

2007). There will be a parameter set (b, r2) for each species. Pre-

dictions are independent. Each fitted model is controlled by the

hidden relationships (e.g. eqn 6) – the fit for any one species is

implicitly conditional on all others.

If instead we analyse the joint distribution of species, the first part

of eqn 15 remains the same, but the second part is now

YJ

j¼1

N ln kj jxjb;Rs

� �
ð16Þ

The length-S vector of log intensities kj at location j is taken to be

multivariate normal. The vectors bs are gathered into the k by S matrix

b. The only difference between eqns 15 and 16 is the fact that we are

allowing that species are related not only through the variables that

can be measured (xj), but also those that cannot (Rs). There is nothing

in either approach that entails how species interact, just their direct

relationships to predictors and remaining covariances.

The two approaches are illustrated where species vary with soil

moisture and elevation, summarised by two principle components

(Fig. 9a). Priors on b, r2, and R are weak. The posterior distribution

of these parameters and the imputed {kij} were simulated with

Metropolis-within-Gibbs sampling. Predictive means for the two

approaches look the same (Fig. 9c), but residual errors differ

(Fig. 9b, see below). However, a change in the presence of one

species causes a large change in predictions from the multivariate

model, but no change in independently fitted models (Fig. 9d). And

neither is �correct�. The univariate models are unrealistic because the

removal of a competitor should allow expansion of the species that

occur with it. Instead, the univariate models simply leave the space

empty, having no way to correct for the missing species. The

multivariate model errs in a different way – upon removal of a

species, it predicts a decline in any species that is positively

correlated with it, and vice versa (Fig. 9c). This is the opposite of

what should occur: species abundant on the same sites will benefit

most, not least, by removal of a competitor.

The advantage of modelling species together comes from the fact

that prediction benefits not only from information in x but also from

information in Rs. There is low residual error in the multivariate model

(Fig. 9b) and small prediction error because much of the information

comes from other species. However, the case for fitting species

together goes no further than this. No additional accommodation for

species interactions comes from the multivariate model because there

is no opportunity to disaggregate competition and environment. Both

models depend on the assumption that the same species are present

for calibration and prediction. Both suffer from the fact that the data

cannot be disaggregated into environment and competition. Once

again, aggregation is the challenge.

DISCUSSION

Debates about niche modelling, contributions of individual variation

to biodiversity, identification of species differences and inference for

demographic models owe much to a commonly overlooked problem.

The problem is not a failure to recognise that processes operate at

different scales, the subject of a large �scaling� literature. The confusion

results instead from aggregating over the relevant scale to draw

conclusions from models and data informed by a different scale.

Species do not interact or respond to climate change, but individuals

do. Data collection implicitly conditions on the setting from which

observations were obtained; the inevitable marginalisation over

sample space and time degrades information. Analysis degrades

information further, as observations from many organisms and plots

are aggregated to produce species-level averages. Species differences

are hidden and qualitatively changed (Fig. 5). The relationships can be

recovered if there is opportunity to disaggregate.

Recent emphasis on synthesis has motivated many studies that treat

species as observations, including comparisons of trait values from the

literature. In some cases, aggregation is desirable. In other cases,

treating species as observations is the only option, and it can provide
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Figure 9 (a) PCA summary for 11 plots (black letters), 16 dominant tree species and two environmental variables (elevation, moisture index) for stands analysed by Clark et al.

(2010). (b–d) Each dot is one species, plotted as estimates from models fitted independently for each species (vertical axis) and together (horizontal axis). In (b) residual

standard deviations for independently fitted models (rs in eqn 15) are larger than for a single multivariate model [diag(Rs) in eqn 16]. (c) Predictions of mean abundance (ksj)

across an elevation gradient are essentially the same. (d) When a species is removed (Liriodendron tulipifera), the multivariate model (eqn 16) predicts large decline in species that

tend to occur with Liriodendron (left of 1 : 1 line) and large increase in species that tend not to occur with Liriodendron. Neither correctly predicts that species that occur with

Liriodendron would benefit most.
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useful insight (Reich et al. 1999; Wright et al. 2004; Westoby & Wright

2006). Failure to recognise aggregation, not aggregation itself, is

the source of problems. The lost of information is critical when the

processes of interest operate at the disaggregated level.

The three options we summarise can be valuable even before data

collection begins. In many cases, data are collected and �pre-

marginalised� or they are collected in a way that misses opportunity

to learn from the joint distribution. For example, a study of specific

leaf area and leaf nitrogen along a gradient might not come from the

same leaves or even from the same individuals. Samples obtained

from random individuals are often aggregated by species and plot.

Each species has a value for each variable at each location, but there is

no joint distribution. Species projections on two dimensions are

misleading (Fig. 3) and inadequate for inference on processes that

operate at the individual scale (Figs 5 and 8).

In many cases, the solution can be simple. By obtaining samples from

the same individuals, one can construct the joint distribution of traits

(Figs 1 and 5). Where disaggregation is not possible, or it cannot be done

along the dimensions of interest, we suggest disaggregation in other

dimensions thatcould increase information.Disaggregationfromspecies

to individuals and years reveals species differences that are not apparent

from species-level data (Clark 2010). A third option of marginalising the

model essentially degrades the model to admit aggregated data and

sometimes recover conditional relationships (Fig. 8).

Aggregation plays a role in predicting diversity based on indepen-

dent analysis of individual species. Invasion by exotic species depends

on those already present (Stohlgren et al. 2001; Drake & Lodge 2006;

Pathikonda et al. 2008). The aggregation in distribution data frustrates

interpretation regardless of whether species are analysed indepen-

dently or jointly (Fig. 9).

The species-level differences that explain coexistence and environ-

mental response are evident in individual-level variation, but

unobservable when using aggregated data or models. Species

differences long known from physiological studies affect short-term

uptake of moisture and nutrients, responses to sunflecks, phenological

differences, capacity to withstand short-term and long-term drought

and responses to pathogens and herbivores. Growth, survival and

fecundity are a direct consequence of individual health, and fitness is a

direct consequence of demography. The fact that individuals respond

to variation more like others of the same species concentrates

competition within the species, thereby promoting coexistence (Clark

2010). The evidence is widespread in field data. In our studies, record

white oak fecundity in 2009 resulted in intense intraspecific seedling

competition. Late frost in 1997 led to loss of red maple recruitment at

mid elevations, but not other species. Growth and fecundity of several

elm species closely track summer drought, whereas coexisting

persimmon, sweet gum and red maple do not (Clark et al. 2011).

These are a few of many examples of responses that amplify self-

regulation in ways that are not accommodated by models used to

analyse species differences and to explain coexistence. They do not

enter resource-competition models or metapopulation models,

including those viewed as including individual variation.

Equations 7 and 8 have the heuristic value of showing how

individual variation can reveal species differences when information is

limited. Unobserved variables contribute to covariance structure,

rather than mean structure. Even without genetic variation, individuals

differ due to the distribution of unobserved influences that enter

through Vs. The translation of this variation by the individual enters

through bs, different for each species. Species differ in terms of their

distributions of individuals, and this individual scale is critical for

understanding biodiversity.
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Araújo, M.B. & Luoto, M. (2007). The importance of biotic interactions for

modelling species distributions under climate change. Glob. Ecol. Biogeogr., 16,

743–753.

Banerjee, S., Carlin, B.P. & Gelfand, A.E. (2004). Hierarchical Modeling and Analysis for

Spatial Data. Chapman and Hall, Boca Raton, FL.

Baraloto, C., Goldberg, D.E. & Bonal, D. (2005). Performance trade-offs among

tropical tree seedlings in contrasting microhabitats. Ecology, 86, 2461–2472.

Barbet-Massin, M. & Jiguet, F. (2011). Back from a predicted climatic extinction of

an Island endemic: a future for the Corsican Nuthatch. PLoS ONE, 6, e18228,

doi: 10.1371/journal.pone.0018228.

Bazzaz, F. (1979). The physiological ecology of plant succession. Annu. Rev. Ecol.

Syst., 10, 351–371.

Berec, L. (2002). Techniques of spatially explicit individual-based models: con-

struction, simulation, and mean-field analysis. Ecol. Modell., 150, 55–81.

Bickel, P.J., Hammel, E.A. & O�Connell, J.W. (1975). Sex bias in graduate admis-

sions: data from Berkeley. Science, 187, 398–404.
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