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Pharmaceutical consumption has expanded rapidly during the last century and their persistent presence in the
environment has become a major concern. Unfortunately, our understanding of the distribution of pharmaceu-
ticals in surface water and their effects on aquatic biota and public health is limited. Here, we explore patterns
in the detection rate of the most frequently studied pharmaceuticals in 64 rivers from 22 countries using bi-
clustering algorithms and subsequently analyze the results in the context of regional differences in pharmaceu-
tical consumption habits, social and environmental factors, and removal-efficiency of wastewater treatment
plants (WWTP). We find that 20% of the pharmaceuticals included in this analysis are pervasively present in
all the surface waterbodies. Several pharmaceuticals also display low overall positive detection rates; however,
they exhibit significant spatial variability and their detection rates are consistently lower in Western European
and North America (WEOG) rivers in comparison to Asian rivers. Our analysis suggests the important role of
pharmaceutical consumption and population in governing these patterns, however the role of WWTP efficiency
appeared to be limited.Wewere constrained in our ability to assess the role of hydrology, whichmost likely also
plays an important role in regulating pharmaceuticals in rivers. Most importantly though, we demonstrate the
ability of our algorithm to provide probabilistic estimates of the detection rate of pharmaceuticals that were
not studied in a river, an exercise that could be useful in prioritizing pharmaceuticals for future study.
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1. Introduction
Pharmaceutical consumption has increased drastically in the last
50 years and is likely to continue increasing in the coming years due
to rising population, changing demographic across the globe, and grow-
ing availability across the world (Daughton, 2003). The presence of
pharmaceuticals and their metabolites in environmental matrices is
well established and is a major environmental concern (aus der Beek
et al., 2016; Daughton, 2001; Jones et al., 2001; Oaks et al., 2004;
Schwarzenbach et al., 2006). However, there are considerable knowl-
edge gaps on the impacts of pharmaceuticals on aquatic organisms
and ecosystems (Botitsi et al., 2007; Brain et al., 2008; Daughton,
2001; Kümmerer, 2009a, 2009b; Santos et al., 2007). With increasing
use of gray water in agriculture and in recharging groundwater for fu-
ture human consumptions, there are also growing concerns on the
long-term effects of persistent exposure to pharmaceuticals on public
health (de Jesus Gaffney et al., 2015; Grossberger et al., 2014; Jones-
Lepp et al., 2012;Webb et al., 2003).Many countries and environmental
agencies have recognized their potential detrimental effects and are de-
veloping policies to mitigate their impacts (Kaplan, 2013; Peake et al.,
2015; Walters et al., 2010).

To evaluate the potential eco-toxicological risks of pharmaceuticals,
it is important to measure or model (Amiard-Triquet et al., 2015;
Huggett et al., 2003; Johnson et al., 2013; Kehrein et al., 2015; Kostich
and Lazorchak, 2008) their concentration in environmental compart-
ments, document their spatiotemporal variability and understand the
role of environmental and social factors in determining their presence
in the environment. However, there are N3000 pharmaceuticals con-
sumed in Europe alone (Donnachie et al., 2016) and exhaustive moni-
toring of all the pharmaceuticals (and their metabolites) is expensive
and impractical. In this regard, statistical analysis (such as meta-
analysis, clustering, regression) of large pharmaceutical datasets could
be useful in identifying spatiotemporal patterns of pharmaceuticals
and their relationship with environmental covariates. This information
could then be used to prioritize pharmaceuticals for future studies, as-
sess relationships between pharmaceuticals (for example: which phar-
maceuticals co- occur in a river and which do not), examine
pharmaceutical detection patterns across regions, and identify other
questions relevant to the risk of pharmaceuticals in surface water
(Altenburger et al., 2003; Andrews, 2001; Donnachie et al., 2016;
Jones et al., 2002; Kostich and Lazorchak, 2008; Kumar and
Xagoraraki, 2010; Rehman et al., 2015). It is howeverworthmentioning
that for statistical and big data analyses, a minimum number of analyt-
ical measurements for each pharmaceutical are required.

Here, we systematically analyze the detection rate (how often a
pharmaceutical was positively detected when analyzed) of the 112
most commonly studied pharmaceuticals in 64 rivers from 22 countries
using a stochastic block model (also known as a co-clustering or bi-
clusteringmodel). Briefly, stochastic blockmodel (SBM) is used for clus-
tering high-dimensional data, where the algorithm simultaneously
clusters rows and columns of the data to obtain subgroups of rows
and subgroups of columns that exhibit a high correlation (Berkhin,
2006; Govaert, 1995; Hartigan, 1972; Tanay and Sharan, 2004). A salient
feature of the algorithm is its ability to perform robustly even with sub-
stantial missing data. The algorithm has been used for analyzing high-
dimensional data in many fields, including bioinformatics (Tanay and
Sharan, 2004), text-mining (Dhillon, 2001), ecology (Chi et al., 2017;
Hill et al., 2013), and social network analysis (Banks and Hengartner,
2008; Hoff et al., 2002). Fig. 1 provides a hypothetical example to illus-
trate how the algorithmworks. For detailed information on SBM and/or
co-clustering please refer to (Berkhin, 2006; Govaert, 1995.; Hartigan,
1972).

In this study we 1) systematically analyze the spatial patterns in the
detection rates of themost commonly studied pharmaceuticals, 2) ana-
lyze the role of social and environmental factors, such as wastewater
treatment plant (WWTP) efficiency, pharmaceutical consumption
habits, population density and hydrological factors, in determining the
pattern of pharmaceutical detection rates, and 3) estimate the occur-
rence probability of unanalyzed pharmaceuticals to support analyte pri-
oritization for future study.
2. Methods

2.1. Description of the database and data aggregation

We obtained the pharmaceutical data analyzed in this study from
the Measured Environmental Concentration (MEC) database main-
tained by the German Environmental Agency (UBA, https://www.
umweltbundesamt.de/en/database-pharmaceuticals-in-the-
environment-0). The database, accessed on 10/01/2018, consists of
123,761 entries of pharmaceuticals and/or their transformation prod-
ucts measured in environmental matrices such as surface water,
groundwater, drinking water and WWTP effluent across 71 countries.
To our knowledge, this is the most comprehensive global dataset on
pharmaceuticals available. For details on the database please refer to
UBA website and aus der Beek et al. (2016). Majority of the data in
the database were from 2001 to October 2013. Only 1281 entries in
the database predated 2001 and there were no entries after October
2013.
2.2. Rationale for analyzing detection rates of pharmaceuticals

Instead of analyzing measured concentrations reported in the data-
base, we transformed the data into presence/absence format for several
reasons. First, the majority of the studies measuring pharmaceuticals
during the last two decades have not followed internationally/region-
ally established protocols (Ort et al., 2010) with minimal information
on uncertainty associated with the measurements. Second, most of the
pharmaceuticals included in our analysis have been measured b5
times on a river with limited or no information on the prevailing hydro-
logical conditions. As a consequence, using a statistical estimate (such as
mean or mode) can lead to incorrect characterization of the concentra-
tion if all the measurements were done only within a single hydrologic
regime (for e.g. river low-flow season). Finally, several studies often re-
port different summary statistics (e.g., mean, median or maximum con-
centration), typically based on very different sample sizes, hindering a
straight-forward comparison of these concentration values. Due to
these limitations, we believe that reducing the data to present/absent
formatwas themost reliable and robustway tominimizemeasurement
uncertainties while capturing the majority of the data published over
the last two decades.
2.3. Rationale for analyzing pharmaceutical data on basin scale instead of
national scale

While there have been previous global, continental and country
level analyses to identify and understand spatiotemporal variability in
pharmaceutical occurrence in surface water bodies (Barnes et al.,
2008; Hughes et al., 2013; Jiang et al., 2013; Klečka et al., 2009; Loos
et al., 2010), none to our knowledge have performed statistical analysis
to explore global patterns in pharmaceutical occurrences in surface
waterbodies and understand the factors determining these patterns at
basinal scale. A primary motivation for basin-scale analysis was the
high variability in data availability between national datasets with
some countries (such as GermanyorUSA) having an order ofmagnitude
or more data than others. Importantly, pharmaceutical measurements
when organized by river basins are more evenly distributed and less
skewed (supplementary material, Fig. S1), thus allowing more robust
statistical comparisons.

https://www.umweltbundesamt.de/en/database-pharmaceuticals-in-the-environment-0
https://www.umweltbundesamt.de/en/database-pharmaceuticals-in-the-environment-0
https://www.umweltbundesamt.de/en/database-pharmaceuticals-in-the-environment-0


Fig. 1. Schematic representing simultaneous clustering of 10 (hypothetical) rivers and 14 (hypothetical) pharmaceuticals studied on those rivers. (a): Detection rate (how often a
pharmaceutical was positively detected when analyzed for) of the 14 pharmaceuticals (columns) measured across 10 rivers (rows) arranged in alphabetical order. Pharmaceuticals
that are not studied in a river are shown as blank. (b) SBM rearranges blocks of pharmaceuticals and rivers that exhibit high degree of similarity. The SBM divides the 14
pharmaceuticals in 4 clusters (A to D, separated by blue vertical lines). and divides the 10 rivers in three groups (1 to 3, separated by magenta horizontal lines). Each colour represents
a river-pharmaceutical block. As an example, “pharmaceutical cluster A – river group 1” reveals that the detection rates of pharmaceuticals in cluster A have the lowest detection rates
for rivers in group 1 and “pharmaceutical cluster D – river group 3” reveals that the detection rates of pharmaceuticals in cluster D have the highest detection rates for rivers in group
3. (c) The probability of positively detecting an unstudied pharmaceutical (for example, pharma 8 at river 1) is 0.9 (as they belong to “pharmaceutical cluster D – river group 3” block).
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2.4. Statistical analyses

2.4.1. Pharmaceutical contamination index
For each river i, we calculated the mean detection rate or River Con-

tamination Index (RCI) using the following formula

RCIi ¼
1
ni

Xni

j¼1

Pi; j

T i; j

where Pi, j and Ti, j are the number of times pharmaceutical j was
positively detected and measured at river i, respectively. In this
expression, ni is the number of unique pharmaceuticals measured
at river i. An RCI value of 1 means that all pharmaceutical
analytes assessed in river i were detected and a value of 0
means that none of the pharmaceuticals measured at river i
were ever detected.
2.4.2. Stochastic block model
For each river, we determine the number of times a pharmaceutical

was analyzed and positively detected.We arranged our data in a format
where each row represents a river and each column represents a unique
pharmaceutical. Themodel groups together rivers and pharmaceuticals
that have similar detection rate and output subgroups (also called
blocks) that are similar. We used SBM in our analysis as it not only al-
lows us to identify rivers groups and pharmaceutical clusters with sim-
ilar detection rates but also provides information on their covariation
that can be used for prediction. Additionally, the generative nature of
SBM allows computing the mean probability (together with the associ-
ated uncertainty) of positively detecting pharmaceuticals for each” river
and pharmaceutical block”. In other words, the model provides us the
probability (with uncertainty) of detecting unmeasured pharmaceuti-
cals in a river. The detailed process of sub-setting data from theMEC da-
tabase, its subsequent manipulation for analysis and a complete
description of our algorithm are provided in the supplementary mate-
rial. We provide an illustrative example of our data formatting and its
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subsequent rearrangement by SBM in Fig. 1. Since the algorithm groups
rivers aswell as pharmaceuticals (see Fig. 1),we refer to pharmaceutical
groups as ‘pharmaceutical clusters’ to avoid confusionwith river groups.

Similar to the river, we determined the number of times a pharma-
ceutical was analyzed and positively detected in WWTPs (influent and
effluent). Pharmaceuticals that were measured in WWTP but were not
part of our river subset samples were discarded. To explore continental
scale differences, we subdivided theWWTP detection rates in three UN
groups (Asia, Eastern Europe andWestern Europe and others) and sum-
marized them based upon pharmaceutical clusters.

2.5. Social and environmental variables

We explored the effect of environmental and anthropogenic factors
(e.g., watershed size, river length, flowrate and population density) on
the degree of contamination for the different rivers. We specifically
chose these variables as it has been shown that they can play an impor-
tant role in governing the degree of contamination of the rivers (Acuña
et al., 2015; Burns et al., 2018; Kaushal and Belt, 2012; Osorio et al.,
2016, 2012a; Peng et al., 2008). We obtained the corresponding infor-
mation for each river basin from published literature and reports from
national agencies. For the few rivers with no published data on popula-
tion, we estimated basin population by clipping the global population
estimates, obtained from the Center for International Earth Science In-
formation Network (Columbia University), with river shape files ob-
tained from HydroSHED (Lehner et al., 2008) and European
Environmental agency.

3. Results

Our methodology resulted in 2202 measurements of 112 pharma-
ceuticals across 64 rivers (Fig. S2) with 1324 positive observations
resulting in a mean detection rate of 60%. The range of RCI varied be-
tween 0 and 1. Except for one river with measurements between 30
and 50 samples (Fig. 2), very low RCI values were generally associated
with rivers with a lower number of measurements (Fig. 2) suggesting
that sample sizemight play a role in governing the RCI. Indeed, for rivers
with b50 measurements, the range of RCI was large (0 to 1). On the
other hand, for rivers, with N50 measurements RCI ranged from 0.3 to
0.85 (Fig. 2), revealing that as the number of measurements increases,
extremely low RCI values are unlikely and thus every river would ex-
hibit some degree of contamination if pharmaceuticals are measured
with adequate intensity. This suggest that the limited monitoring of
pharmaceuticals in waterbodies, compared to amore traditional pollut-
ants, may lead to inaccurate conclusions on their presence or absence,
and concentrations, and that further, more spatially and temporally in-
tensive, monitoring is needed.
Fig. 2. RCI of the rivers grouped by the total number of measurements on th
The stochastic blockmodel (SBM) resulted in 6 pharmaceutical clus-
ters and 5 river groups respectively (Fig. 3) yielding 30 (6 × 5) blocks of
rivers and pharmaceuticals. Each block consists of a set of rivers that
have similar detection rates for a set of pharmaceuticals. Each block
can also be considered as a set of pharmaceuticals that have similar de-
tection rates for a set of rivers. The effectiveness of the model in group-
ing surface waterbodies as well as pharmaceuticals with similar
detection rates is best realized by visually comparing the data before
and after clustering (see Fig. S3 for the raw un-clustered data). The
pharmaceutical clusters and the river groups are arranged in increasing
order of the detection rates.

Pharmaceuticals in clusters D to F were positively detected in all
the river groups and pharmaceuticals in clusters A and Bwere mostly
undetected in river groups 1 to 3 (Fig. 3). We also observe regional
differences in the river groups. All but two Asian rivers were
assigned to river groups 4 and 5 and exhibited high detection rates,
suggesting high level of contamination in Asian Rivers. European
and North American rivers were present in all the groups, however
our model also revealed important differences within the European
rivers. Only German and Slovenian rivers belonged to river groups
1 and 2, with very low detection rates of cluster A pharmaceuticals
(b10%, Fig. 3). In contrast, the detection rate of cluster A pharmaceu-
ticals for Italian, Spanish and French rivers (belongingmostly to river
groups 3, 4 and 5, Fig. 3) were ~35% which, although lower than the
detection rate in Asian rivers (N80%), was still higher than the rivers
flowing in Germany, Slovakia and Netherlands (b20%). None of the
cluster A pharmaceuticals (N20 different pharmaceuticals) that
were measured multiple times in the River Rhine (flows through
Switzerland, Germany and the Netherlands) were positively de-
tected (Fig. 3).

Our result suggests that, the mean probability of positively de-
tecting the pharmaceuticals in cluster F was high (Fig. 4) in all the
rivers included in this study. Similarly, except for rivers in group 1,
the mean likelihood of positively detecting clusters D and E pharma-
ceuticals in unmeasured rivers was N50%. In contrast, the detection
rates of clusters A to C pharmaceuticals in river groups 1 and 2
were low (Fig. 4).

The estimated 95% credible intervals provide confidence in
interpreting the mean detection rate associated with each river
and pharmaceutical block. The narrow 95% credible intervals
(CIs, ranging mostly from 0.6 to 1) associated with cluster F for
all the river groups (Fig. 4) suggests high confidence in the likeli-
hood of positively detecting cluster F pharmaceuticals at all the
rivers. On the other hand, the 95% CI associated with clusters C
and D are large (Fig. 4) (due to limited number of measurements)
indicating substantial uncertainty associated with these probabili-
ties (Fig. 4).
e river. The colour palette (blue to red) represents lower to higher RCI.



Fig. 3.Detection rate of the 112 pharmaceuticals (columns) studied across the 64 rivers (rows).White square represents pharmaceuticals that were not studied at that river. Rows 1–9, 10–21, 22–35, 36–60 and 61–64 represents river groups 1,2,3,4,
and 5 (partitioned by magenta lines). Columns 1–67, 68–81, 82–85, 86–91, 92–103 and 104–112 represents pharmaceutical clusters A, B, C, D, E and F (partitioned by blue lines). Each rectangle enclosed by the magenta and blue lines is a
pharmaceutical-river block and have similar detection rates. For illustration, blocks “A–4” and “E–3” are highlighted (lightly shaded). Mean detection rate (and the 95% credible interval) for each river-pharmaceutical block is shown in Fig. 4. The
name of the rivers in Asia is highlighted in (green), North America (red) and Europe (black).
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Fig. 4.Meanprobability (shown by red circle) and 95% credible interval (Shown as error bar) of positively detecting unstudied pharmaceuticals in each pharmaceutical cluster-river group.
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4. Discussion

4.1. Pattern in pharmaceutical detection rates

The high detection rates of 22 pharmaceuticals in clusters D to F
(Fig. 3) suggests that these pharmaceuticals were present ubiquitously
in all the rivers included in this study. Many pharmaceuticals in clusters
D to F are among themost widely consumed in the USA, UK and several
other countries (Fuentes et al., 2018; Letsinger and Kay, 2019) and have
exhibited high detection frequencies in previous global analyses of
pharmaceuticals in surface water bodies (Fekadu et al., 2019; Hughes
et al., 2013). The pharmaceuticals included by our model in clusters D
to F do not belong to a single therapeutic group but come from diverse
Table 1
Pharmaceuticals (and their therapeutic groups) in clusters D to F. Pharmaceuticals in clusters D

Cluster D Cluster E

Mean detection rate N60% for 56 rivers

Pharmaceutical Therapeutic group Pharmaceutical

Azithromycin Antibiotics Bezafibrate
Ibuprofen Analgesics Clarithromycin
Mestranol Estrogen Diatrizoic acid
Metoprolol Beta blockers Erythromycin
Pentoxifylline Beta blockers Gemfibrozil
Propyphenazone Analgesics Iopamidol

Iopromide
Naproxen
Ofloxacin
Propranolol
Sotalol
classes including analgesics, antibiotics, estrogens and beta-blockers
(Table 1).

Even though the overall detection rate of pharmaceuticals in clusters
A, B and C (Fig. 3) was lower, the detection rate for pharmaceuticals in
these clusters were not similar across the river groups. Blocks 4-A, 5-A
3-B, 4-B and 5-B had much higher positive detection than blocks 1-A,
2-A, 3-A, 1-B and 2-B (see Fig. 3). Most of the rivers with high detection
rates of pharmaceuticals in clusters A and B were Asian. Among the
European rivers, only Italian, French and Spanish exhibited high detec-
tion rates. Rivers from other European countries including England,
Germany, Netherlands and Slovakia exhibited low detection rates for
pharmaceuticals in clusters A and B. Our model output suggests, that
there are systematic country level differences in the rivers for clusters
to F were detected ubiquitously in all the rivers analyzed in this study.

Cluster F

Mean detection rate N80% for 64 rivers

Therapeutic group Pharmaceutical Therapeutic group

Lipid-lowering drugs Atenolol Beta blockers
Antibiotics Carbamazepine Antiepileptic drugs
Radiocontrast agents Codeine Morphine derivates
Antibiotics Diclofenac Analgesics
Lipid-lowering drugs Gabapentin Anticonvulsants
Radiocontrast agents Iomeprol Radiocontrast agents
Radiocontrast agents Oxazepam Anxiolytics
Analgesics Salicylic acid Natural product
Antibiotics Sulfamethoxazole Antibiotics
Beta blockers
Beta blockers
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A and B pharmaceuticals. These differences might be attributable to
multiple factors (e.g., pharmaceutical consumption pattern, WWTP re-
moval processes, hydrological and social factors and/or a combination
of these factors), that we discuss below.

4.2. Factors governing the regional differences among the rivers

To explore the patterns observed above,we combined the rivers into
their official UN regional group resulting in 13, 10 and 41 rivers belong-
ing to Asia, Eastern Europe (EE) and Western Europe and others
(WEOG) regional groups, respectively. For the WEOG group, 33 rivers
wereWestern European and 8wereNorthAmerican.We also combined
pharmaceuticals in clusters A to C and D to F respectively in 2 groups as
pharmaceuticals in clusters A to C and D to F have similar detection
rates. We restrict our discussion to Asian and WEOG groups as the ma-
jority of the rivers in the EE group are from a single country (Slovakia,
see Fig. 3 and Fig. S1).

4.2.1. Wastewater treatment plants
In developed countries, WWTP effluent is the primary source of

pharmaceuticals to aquatic environments (Andreozzi et al., 2003;
Letsinger andKay, 2019; Petrovic et al., 2002) and thedegree of contam-
ination of a river is linked to the pharmaceutical removal efficiency of
WWTPs. In developing countries, untreated effluent could also be
discharged directly due to absence ofWWTPs and/or limited connectiv-
ity between houses andWWTPs. The removal rate of pharmaceuticals in
WWTP varies significantly (Khamis et al., 2011; Verlicchi et al., 2012).
Many of the clusters D to F pharmaceuticals such as diclofenac,
acetylsalicylic acid, naproxen, and gemfibrozil are in ionic state at neu-
tral pH, and therefore difficult to remove during waste water treatment
processes (Khamis et al., 2011). In an extensive review, (Verlicchi et al.,
2012) showed that the removal rate of several clusters D to F pharma-
ceuticals such as carbamazepine, sotalol, sulfamethoxazole, metoprolol,
erythromycin and others are as low as 40% even post-secondary treat-
ment. In contrast, many of the pharmaceuticals in clusters A to C includ-
ing doxycycline, chlortetracycline, estradiol, paroxetine, sulfamethizole
etc. have been shown to have higher removal rates (Verlicchi et al.,
2012). Themedian removal rate of clusters A to C andD to F pharmaceu-
ticals compiled in Verlicchi et al. (2012) is 63% and 47% respectively (see
Fig. S4). It is therefore possible that the patterns observed in our phar-
maceutical clusters are related to their removal efficiency by WWTP.
SinceWWTP aremore extensive and up to date inWEOG (includes sec-
ondary and tertiary treatment processes), we hypothesized that the dif-
ferences in the detection rate for cluster A to C pharmaceuticals
between Asian andWEOG rivers could be due tomore efficient removal
of clusters A to C pharmaceuticals in WEOG.

For Asia as well asWEOG groups, the detection rates of pharmaceu-
ticals in clusters D to F were high for both WWTP influent and effluent,
with little difference between Asian andWEOG effluents (Fig. 5c and d).
This was not surprising as clusters D to F pharmaceuticals are difficult to
remove using conventional WWTP processes (Verlicchi et al., 2012). As
expected, for pharmaceuticals in clusters A to C, the median detection
rates in WWTP effluent were lower than the influent detection rates
for both Asia and WEOG groups (Fig. 5a and b) suggesting that WWTP
processes are more successful in removing these pharmaceuticals than
D to F pharmaceuticals. However, the decrease in the detection rate
from influent to effluent was not statistically different (t-test, p N .05)
for Asian andWEOGWWTP effluents. Therefore, our first order compar-
ative analysis does not provide any compelling indication that there are
systematic differences between the WWTPs in Asia and WEOG, or that
WEOG WWTPs are removing pharmaceuticals more effectively com-
pared to the AsianWWTPs. It is possible that WEOGWWTPs are better
at lowering the concentration; however, our analysis suggests that even
in that case, the concentration is still high enough for the pharmaceuti-
cal to be detected in WWTP effluents. A meta-analysis of
pharmaceutical concentration in WWTP influent and effluent across
the different countries can provide more detailed insight into these
differences.

We observe a substantial decrease in the detection rates of cluster A
to C pharmaceuticals between WWTP effluents and downstream river
sites for WEOG (Fig. 5a) but not for Asia (Fig. 5b). The higher detection
rates in rivers compared to the WWTP effluent for Asia suggests addi-
tional input through combined sewer overflows and/or direct discharge
of untreated sewage water to the rivers. Indeed, the degree of connec-
tivity of households to WWTP in Asia are significantly lower compared
to the WEOG and the observed pattern is not surprising and highlights
the need of reducing discharge of untreated wastewater in rivers (and
other surface waterbodies) in Asia (Isobe et al., 2004; Shrestha and
Pandey, 2016; Thomes et al., 2019).

It would have been interesting to divide European WWTPs in two
subgroups that included Germany, Netherlands, Austria, Switzerland,
Belgium and England in one group and France, Italy, Spain, Portugal
and Greece in another, as the countries in latter group had b40% of the
population served by WWTP with tertiary treatment process before
2005 (https://www.eea.europa.eu/data-and-maps/indicators/urban-
waste-water-treatment/urban-waste-water-treatment-assessment-4)
whereas N80% of the population in Germany, Netherlands, Austria,
Switzerland, Belgium and Englandwere served byWWTPswith tertiary
treatment processes by 2005. However, due to limitedWWTP samples,
we did not further subdivide WEOG WWTPs data in subgroups. Given
the fact that most European WWTPs have upgraded to tertiary treat-
ment in recent years, and there have been large number of studies in re-
cent years an analysis comparing detection rates inWWTP pre and post
2010 in Europe can help to understand and document the effectiveness
of the advanced techniques in removing pharmaceuticals and perhaps
explain the differences in degree of contamination of European rivers.

4.2.2. Regional variation in pharmaceutical consumption
Themajority of the pharmaceuticals in clusters A to C are antibiotics

(48 out of 85, Table 1) and their consumption varies significantly across
the globe. Indeed, antibiotics are used less often and are generally more
difficult to obtain without prescription in WEOG whereas their con-
sumption in Asia is widespread and they are easily available and often
unregulated (Komori et al., 2013; Shimizu et al., 2013). Between 2000
and 2010, global antibiotic consumption increased by 35%, fueled dom-
inantly by Asian countries (Van Boeckel et al., 2014) with India and
China being the largest consumers. In comparison, the consumption of
antibiotics was not only lower in European countries, but also declined
( Antimicrobial Consumption - Annual Epidemiological Report for 2017
[WWW Document]; Van Boeckel et al., 2014).

Asmentioned previously, themajority of the rivers in groups 1 and 2
were German and Slovenian, whereas rivers in France, Italy and Spain
belonged to groups 3 to 5. According to the latest OCED (Organization
for Economic Co-operation and Development) report (2017), Italy and
France are among the highest consumers of antibiotics in Europe. The
defined daily dose (DDD) of antibiotics in Italy and France are ap-
proximately three times higher than Netherlands and twice that of
Germany and Slovenia. For this reason, we believe that the pattern
observed for pharmaceuticals in clusters A to C withmuch higher de-
tection rate in Asia and some European countries in part reflect the
regional and country level variation in consumption of these
pharmaceuticals.

4.2.3. Effects of hydrologic and socio-environmental factors
The differences observed in the detection rates among the rivers

could also be due to local hydrological factors. The presence of pharma-
ceuticalswill vary in rivers due to the prevailing hydrological conditions
at the time of sampling. For instance, high river flows may dilute phar-
maceutical residues emanating fromwastewater treatment plants. Con-
versely, untreated effluent could be released from combined sewer
overflows during storm events. Unfortunately, these hydrological

https://www.eea.europa.eu/data-and-maps/indicators/urban-waste-water-treatment/urban-waste-water-treatment-assessment-4
https://www.eea.europa.eu/data-and-maps/indicators/urban-waste-water-treatment/urban-waste-water-treatment-assessment-4


Fig. 5. Detection rate of pharmaceuticals in rivers, WWTP-effluents andWWTP-influents. (a): pharmaceuticals in clusters A to C inWEOG, (b): pharmaceuticals in clusters A to C in Asia,
(c): pharmaceuticals in clusters D to F in WEOG and (d): pharmaceuticals in clusters D to F in Asia.
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characteristics are seldom described in published reports and scientific
articles. Although pharmaceutical measurements in rivers are tradition-
ally taken during low flow summer conditions close to theWWTP efflu-
ent outlet, many pharmaceutical datasets comprise a small number of
samples taken with no consideration of flow conditions. As a result,
our study, which focuses on general trends at large spatial scales
based on a meta-analysis, unfortunately cannot account for how flow
conditions may have affected the presence of pharmaceuticals in rivers.
Nevertheless, it is important to note that it would be unlikely that high
flow events would have discriminately diluted pharmaceuticals in clus-
ters A to C in WEOG to an extent that they were not detected without a
similar dilution for pharmaceuticals in clusters D to F.

Keeping in mind the limitations of data available and the lack of de-
tailed information associatedwith sampling events, we analyzed the re-
lationship between basin size, river length and mean flow rates and
river contamination index (RCI) of the river. These hydrologic metrics
were available (or obtained) for most of the basins, however our analy-
sis did not result in any statistically meaningful relationship between
RCI and these metrics. Indeed, many of the rivers in group 1 (most con-
taminated) and group 5 (least contaminated) were rivers with compa-
rable mean flow rate and size. Whereas hydrology is a critical factor in
determining the degree of contamination of a river as highlighted by
several studies (Kay et al., 2017; Keller et al., 2014; Kolpin et al.,
2004), the lack of relationship between mean flow rate and the detec-
tion rates highlights the complexity of interaction between hydrology
and pharmaceuticals in water and the inability of seasonally and basin
averaged mean flow values to capture this relationship. Our analysis
highlights the need for long-term catchment scale spatiotemporal stud-
ies to understand these relationships.

We observe an increasing trend in RCI with increasing population
density within the basin (Fig. 6) albeit with significant variability.
Most of the pharmaceuticals analyzed in our study were used primarily
for human consumption and the positive trend between population
density and pharmaceutical detectionwas expected. The effect of popu-
lation on the degree of contaminationwas appropriately highlighted for
the rivers Ebro, Llobregat and Ter. These rivers are comparable in size,
situated within the Iberian Peninsula, Spain (thus experiencing similar
climatic regime and country level pharmaceutical policies) and have
N30 unique measurements on each river. In our analysis, the detection
of pharmaceuticals wasmuch lower for the River Ter (RCI= 0.25) com-
pared to the Llobregat (RCI= 0.78) and Ebro (RCI= 0.80) whichmight
be due to the lower population density of the River Ter (Céspedes et al.,



Fig. 6. Relationship between river contamination index (RCI) and population density for the rivers analyzed in this study. Population density has been divided into 5 sub-classes (b50,
50–100, 100–200, 200–500 and N 500 persons/km2). Correlation between population density and RCI are statistically significant (p b 0.05). The colour palette represents lower to
higher RCI (blue to red).

Table 2
Mean probability and 95% credible interval (values in bracket) of the detection rate of se-
lected pharmaceuticals for River Colorado, Rhine and Elbe.

Pharmaceutical River Colorado River Rhine River Elbe

Estradiol 35% (20–50%) 10% (0–20%) 0% (0–5%)
Ciprofloxacin 65% (60–85%) 40% (20–60%) 3% (0–10%)
Erythromycin 90% (80–100%) 60% (40–80%) 95% (65–100%)
Diclofenac 98% (95–100%) 90% (80–95%) 97% (95–100%)
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2006). A recently conducted independent study (Osorio et al., 2016)
within the same region comparing four rivers (Llogregat, Ebro, Jucar
and Guadalquivir) also highlighted the positive correlation between
human population and pharmaceutical concentration in these rivers
and showed that the degree of contamination of the LLobregat and
Ebro were higher than Jucar and Guadalquivir, most likely due to their
higher population density (Osorio et al., 2016).

The presence of substantial scatter around the relationship between
RCI and population density for each river basin in our analysis could be
due to multiple factors including access to pharmaceuticals, pharma-
ceutical consumption habits, mean age of the population, seasonal var-
iability, per capita domestic water consumption, and sampling
strategies (Murata et al., 2011; Osorio et al., 2012b). Our result high-
lights the relationship between contamination and population and the
growing need to quantify the presence of pharmaceuticals in densely
populated areas especially in developing countries where public health
and aquatic ecosystemsmight be acutely affected due to elevated pres-
ence of several pharmaceuticals.

4.3. A novel approach for selecting pharmaceuticals to be studied in rivers

Currently, N3000 pharmaceuticals are being used globally
(Donnachie et al., 2016) and the list is growing. Despite the importance
of determining their environmental concentration, monitoring or
modeling concentration of pharmaceuticals in surfacewater is challeng-
ing due to limited resources, time and costs associated with these stud-
ies. Most monitoring efforts have been limited to fewer than 10
pharmaceuticals per study (Gros et al., 2006). To circumvent these chal-
lenges, researchers have complemented field measurements with esti-
mated concentrations in surface water using pharmaceutical sales and
wastewater production rates and have developed ranking schemes to
prioritize pharmaceuticals for analysis in a given location (Al-Khazrajy
and Boxall, 2016; Berninger et al., 2016; Bu et al., 2020; De Voogt
et al., 2009; Fick et al., 2010; Huggett et al., 2003; Kostich and
Lazorchak, 2008; Kumar and Xagoraraki, 2010; Sui et al., 2012). Unfor-
tunately, the output of such models varies substantially (Roos et al.,
2012) limiting their utility for analytical prioritization purposes.

The SBM enables the identification of pharmaceuticals with similar
occurrence patterns in surface water. For example, in our dataset for
all the riverswhere both diclofenac and carbamazepineweremeasured,
they were positively detected 90% of the time. Similar patterns were
also observed for pharmaceuticals that were not detected when mea-
sured concurrently. Our model provides a probabilistic estimate of
positively detecting unstudied pharmaceuticals in rivers (Fig. 4),
which can complement existing mechanistic/process-based models
such as those proposed by (Huggett et al., 2003; Kumar and
Xagoraraki, 2010; Roos et al., 2012) to choose the pharmaceuticals to
be included in a study. For example, if diclofenac is positively detected
in a river, it might not be useful to measure carbamazepine in the
same river as it is very likely to be positively detected. A cross-
validation exercise (results not shown) suggests that, by grouping phar-
maceuticals with similar co-occurrence pattern in rivers, we can make
reasonable predictions on the presence/absence of all the pharmaceuti-
cals within a group by performing field measurement of few ‘selected’
pharmaceuticals, a very useful feature given the high costs associated
withmeasuring concentration of these pharmaceuticals. As an example,
we provide estimates of the probability of detecting few selected phar-
maceuticals that were not studied in River Colorado, Elbe and Rhine
(Table 2).Indeed Diclofenac was positively detected in all the water
ways of Elbe River catchment as highlighted in recent studies(Marsik
et al., 2017; Meyer et al., 2016). Although this example is for illustrative
purposes, the goal is to highlight the applicability of statistical analyses
of big pharmaceutical datasets in providing useful information on envi-
ronmental pharmaceutical contamination.We hope that this paper will
motivate environmental scientists in using our method, or develop
other statistical methods, to the emerging field of environmental phar-
maceutical contamination. Our analysis has highlighted and confirmed
some of the patterns (effect of population, consumption patterns) that
have been suggested before but never explored globally.

As the number of studies measuring pharmaceuticals in environ-
mental matrix using standardized protocol is increasing rapidly, for ex-
ample see (Challis et al., 2018; Cui et al., 2019; Grill et al., 2016; Kay
et al., 2017), we plan in the future to perform similar analysis using con-
centration rather than presence/absence data yielding results that are
more useful from an eco-toxilogical and policy point of view. Such anal-
ysis will be especially appropriate for comparing river basins within a
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country as in-country variation in pharmaceutical consumption behav-
ior and WWTP efficiency is likely to be smaller than between-country
variation. We believe that combining process-based rankings with re-
sults from sophisticated statistical model wouldmaximize the informa-
tion that can be obtained on the toxicity of pharmaceuticals in different
environmental matrices and could help in developing sustainable strat-
egies tominimize the effects of pharmaceuticals on aquatic ecosystems.

5. Conclusions

Previous works have suggested the presence of numerous pharma-
ceuticals from a wide spectrum of therapeutic classes in environmental
waters (aus der Beek et al., 2016; Daughton, 2001; Hughes et al., 2013;
Loos et al., 2010). However, to our knowledge, none of them except
(Loos et al., 2010) have conducted a systematic assessment of the detec-
tion rate of pharmaceuticals across multiple rivers. Our meta-analysis
highlights the differences in the detection rate of 112 pharmaceuticals
and their variation across Asia, Europe and North America. We identify
some of the possible factors including consumption rate, local hydrol-
ogy and population that could be driving this pattern. Whereas we
could detect a first order relationship between pharmaceutical detec-
tion rates and pharmaceutical use, the effect of hydrological factors
could not be resolved in this analysis. Importantly, our approach in-
forms the probability of detectingunanalyzed pharmaceuticals and sup-
ports analyte prioritization for future.

Many of our findings have been suggested before, however here we
show these empirically using a large dataset analyzed within a statistical
framework. Future analysis could leveragemuch larger datasets andmore
sophisticated statistical techniques to acquire more detailed and im-
proved information on pharmaceutical contamination in surface water.
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