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Incorrect representation of uncertainty in the modeling of growth
leads to biased estimates of future biomass
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Abstract. Biomass is a fundamental measure in the natural sciences, and numerous
models have been developed to forecast timber and fishery yields, forest carbon content, and
other environmental services that depend on biomass estimates. We derive general results that
reveal how dynamic models that simulate growth as an increase in a linear measure of size
(e.g., diameter, length, height) result in biased estimates of future mean biomass when
uncertainty in growth is misrepresented. Our case study shows how models of tree growth that
predict the same mean diameter increment, but with alternative representations of growth
uncertainty, result in almost a threefold difference in the projections of future mean tree
biomass after a 20-yr simulation. These results have important implications concerning our
ability to accurately predict future biomass and all the related environmental services (e.g.,
forest carbon content, timber and fishery yields). If the objective is to predict future biomass,
we strongly recommend that: (1) ecological modelers should choose a growth model based on
a variable more linearly related to biomass (e.g., tree basal area instead of tree diameter for
forest models); (2) if field measurements preclude the use of variables other than the linear
measure of size, both the mean and other statistical moments (e.g., covariances) should be
carefully modeled; (3) careful assessment be done on models that aggregate similar individuals
(i.e., cohort models) to see if neglecting autocorrelated growth from individuals leads to biased
estimates of future mean biomass.

Key words: deterministic vs. stochastic models; growth; Jensen’s inequality; linear vs. nonlinear
relationships; simulation models; timber yield projections; tree growth models; uncertainty representation;
variance.

INTRODUCTION

Biomass is a fundamental measure in the natural

sciences; for instance, the biomass of a population often

dictates its expected importance in the ecosystem (Power

et al. 1996), yield is often expressed in biomass (e.g.,

Pauly et al. 2003), and forest carbon content is often

estimated as a simple linear conversion of its biomass

(Houghton 2007). Numerous dynamic models have been

created to predict timber and fishery yields, forest

carbon content, and other environmental services that

depend on biomass estimates, often by iteratively

simulating growth, recruitment, and mortality of indi-

viduals (i.e., individual-based models) or groups of

individuals (i.e., cohort models). Here we show that

incorrect representation of uncertainty on linear mea-

sures of growth in these models leads to substantially

biased estimates of future mean biomass.

It has been known for decades that even when models

have the same structure and parameter values, mean

differences arise between deterministic and stochastic

models (e.g., Zhou and Buongiorno 2004, Boyce et al.

2006). This counter-intuitive result is due to a mathe-

matical property of nonlinear functions called ‘‘Jensen’s

inequality’’ (Ruel and Ayres 1999). On the other hand,

examples have recently emerged showing that alternative

representations of uncertainty within stochastic models

can also lead to different mean model outcomes, a fact

that is still underappreciated. For instance, Clark et al.

(2007) have shown that different representations of

uncertainty affect tree-diversity projections. Similarly,

Melbourne and Hastings (2008) have shown how

extinction risk is strongly affected by the specific

combination of factors that contributes to stochasticity

(e.g., the uncertainty regarding sex of individuals,

demographic heterogeneity in vital rates, demographic

and environmental stochasticity) even when total

variance remains unchanged.

Here we show that incorrect representation of linear-

growth uncertainty results in biased estimates of future

mean biomass. We first motivate this with a case study

on timber yield projections. We then provide a general

description of this phenomenon. Finally, we provide

some general recommendations regarding growth mod-

eling.

METHODS

In this section, we describe forest-dynamics simula-

tions used to illustrate the impact of alternative
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representations of uncertainty on the growth model. We

simulated the growth of trees from the tropical timber

species Simarouba amara for a period of 20 years to

determine timber yield. A complete description of the

data used and how the parameters were estimated are

given in Appendix A. Despite similar mean structures

(i.e., all of them use growth models that predict the same

mean diameter increment), they differ in relation to how

diameter increment uncertainty is represented.

We simulated the growth of 100 000 trees with initial

diameter of 15 cm over 20 years. As is standard in forest

dynamic models (Vanclay 1994), annual diameter

increments were added sequentially to the initial

diameter to estimate the size of these trees after 20

years. All simulations had the same mean diameter

increment. In the first simulation (hereafter referred to

as ‘‘Deterministic’’), diameter increment was modeled as

a deterministic phenomenon (i.e., Di,tþ1� Di,t¼ exp[b0þ
(r2

ind þ r2
proc)/2], where b0 is a constant, Di,t is the

diameter of tree i at time t, and r2
ind and r2

proc are the

variances of the random individual effects [RIEs] and

process error, respectively). The term (r2
ind þ r2

proc)/2

ensures that this simulation has the same mean diameter

increment as the other simulations because diameter

increments in the other models we examined are log-

normally distributed. In the second simulation (hereafter

referred to as ‘‘Uncorrelated Growth’’), log diameter

increment was drawn at each time step from a normal

distribution with mean b0 and variance equal to r2
ind þ

r2
proc [i.e., ln(Di,tþ1 � Di,t) ; N(b0, r2

ind þ r2
proc)]. This

simulation represents a scenario where the different

sources of variation are lumped into a single variance

term. In the third simulation (hereafter referred to as

‘‘Random Individual Effects’’), we first drew a random

individual effect ei for each individual from a normal

distribution with mean zero and variance r2
ind and then

drew at each time step the log diameter increment from a

normal distribution with mean b0þ ei and process error

r2
proc. This can be summarized as ln(Di,tþ1� Di,t) ; N(b0
þ ei, r2

proc), where ei ; N(0, r2
ind). Finally, a set of

simulations (hereafter referred to as ‘‘Autocorrelated

growth’’) was performed. For each simulation in this set,

we drew a vector of log diameter increments from a

multivariate normal distribution N(b0, [r2
ind þ r2

proc]R),
where R is a correlation matrix with a lag-1 auto-

regressive structure and correlation parameter q. Each
simulation in this set had a different correlation

parameter q. A summary of each of these simulations

is given in Table 1. Tree biomass (B) was estimated using

the empirical allometric equation Bi,t¼42.69� 12.8Di,tþ
1.242D2

i;t (Brown 1997). All simulations and statistical

procedures were conducted in R (R Development Core

Team 2007).

We emphasize that all simulations had the same mean

diameter increment. Furthermore, simulations 2, 3, and

4 had the same one-step-ahead variance (i.e., Var

[ln(Di,tþ1 � Dt) jDt] ¼ r2
ind þ r2

proc). Thus, two naı̈ve

hypotheses can be made. One of these hypotheses is that

all simulations will predict the same mean basal area and

volume because all have the same mean diameter

increment. Another hypothesis is that stochastic simu-

lations 2, 3, and 4 will predict the same mean basal area

and volume because they have the same mean diameter

increment and one-step-ahead variance.

RESULTS

Simulation results

As predicted, mean tree diameter was almost identical

among all simulations; the range of projected mean tree

diameter after 20 years was 258–259 mm. However,

there were major differences in projected mean basal

area and biomass, and thus both naı̈ve hypotheses were

rejected (Fig. 1). Mean tree basal area and biomass were

smallest for the deterministic simulation and they were

largest for the simulations that represented random

individual effects and highly autocorrelated growth (i.e.,

large q values). In particular, increasing correlation q led

to increasing estimates of mean tree biomass. After 20

years, the estimated mean tree biomass ranged from 542

to 1627 kg, almost a three-fold difference. These

differences were a direct effect of increasing tree-

diameter variance (Fig. 2) on the nonlinear relationship

between tree diameter and biomass. Finally, differences

among the forward simulations increased with the

TABLE 1. Summary description of the functions/distributions used to predict diameter increment
for each simulation of forest dynamics.

Simulation Description of growth model Formulas�

1 deterministic lnðDi;t � Di;t�1Þ ¼ b0 þ
r2

ind
þr2

proc

2

2 stochastic, with uncorrelated growth lnðDi;t � Di;t�1Þ; Nðb0;r
2
ind þ r2

procÞ
3 stochastic, with random individual effects

(RIEs)
lnðDi;t � Di;t�1Þ; Nðb0 þ ei;r2

procÞ
where ei ; N(0, r2

ind)
4 stochastic, with autocorrelated growth ln(I) ; N(b0, (r2

ind þ r2
proc)R)

Notes: The four growth models used have different representations of uncertainty, but the same
mean diameter increment. Simulations were based on the growth of trees from the tropical timber
species Simarouba amara for a period of 20 years to determine timber yields. For details see
Appendix A.

� Di,t is the diameter of tree i at time t, b0 is a constant, r2
ind is the individual random effects

variance, r2
proc is the process variance, I is a vector of diameter increments, and R is the lag-1

autoregressive correlation matrix with correlation parameter q.
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simulation time window, suggesting that these differ-

ences may be even greater for typical timber yield or

forest biomass projections.

It might be argued that these differences emerge

because simulations were performed with models that

are not identical to the fitted model. To show this is not

the case, we also fitted the individual models described in

Table 1 to the data. Simulations using the fitted

parameters revealed the same overall pattern (Appendix

B). In particular, for realistic levels of autocorrelation in

growth or individual random effects, mean estimated

biomass after 20 years can be up to 258% and 63%

greater than the mean estimated biomass for the

deterministic simulation and the simulation with uncor-

related stochastic growth, respectively.

General description of the phenomenon

Here we describe why our findings from the timber-

yield case study are expected to be valid for other

ecological models. To show how the incorrect represen-

tation of linear growth uncertainty results in biased

estimates of future mean biomass, we first describe the

iterative process of predicting future length at time t (Lt).

We refer to the linear measure of size Lt simply as length

but the concepts of this article also apply to other linear

measures of size such as diameter, height, or width, as

long as these linear measures of size have an exponent c
. 2 in the allometric relationship B } Lc, where B is the

organism’s biomass and c is a scaling parameter. Then,

we highlight the biases resulting from alternative

representations of uncertainty in the growth model

when estimating the mean of the quantity At, where At is

defined to be proportional to Lt squared (i.e., At } L2
t ).

Finally, we show how these biases on At are aggravated

for estimates of future mean biomass at time t (Bt). We

provide suggestions for how one can quickly determine

if these consequences are of significance or can be

neglected.

The basic idea arises from the fact that At } L2
t is a

nonlinear relationship. Assuming that Lt is a random

variable, the mean of At is not equal to At calculated at

the mean value of Lt (i.e., E [At]¼E [ f(Lt)] 6¼ f(E [Lt])), a

consequence of Jensen’s inequality. For instance, a

uniform distribution for Lt results in an asymmetric

distribution of At (Fig. 3). Not only does the distribution

change, but also mean At (red and green lines) is shifted

when compared to At calculated at the mean value of Lt

(black line). Furthermore, different distributions with

FIG. 1. Simulation results for three tree characteristics from
the deterministic (black lines), stochastic with uncorrelated
growth (red lines), stochastic with random individual effects
(RIEs; blue lines), and stochastic with autocorrelated growth
(green lines) models. The correlation parameter q is given at the
right-hand side of each panel and is depicted close to the mean
results from the corresponding simulation.

FIG. 2. Mean tree diameter (continuous lines) and 95%
confidence intervals (dashed lines) for the simulation results
from the deterministic (black lines), stochastic with uncorrelat-
ed growth (red lines), stochastic with random individual effects
(RIEs; blue lines), and stochastic with autocorrelated growth
(green lines) simulations. The correlation parameter q is
presented at the right-hand side of the panel and is depicted
close to the upper 95% confidence-interval results from the
corresponding simulation. Note that the lines depicting the
deterministic simulation results and the average tree-diameter
lines for the other simulations are drawn almost on top of one
another.
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the same mean Lt result in different mean At (red vs.

green lines). This phenomenon has already been

described in the context of a particular forest model in

Duursma and Robinson (2003). We take a step further

to show how different representations of uncertainty in

growth directly influence the final distribution of Lt, thus

changing mean At and mean biomass. We also

emphasize that this is a broad phenomenon, applicable

to a number of growth models of different organisms,

not only trees.

We conceptualize the process of growth as increments

in length being added sequentially to the initial length at

time 0 (i.e., L0). Let Li,t and Ii,t be the length and length

increment, respectively, for a given organism in realiza-

tion i and time t. Thus,

Li;t ¼ L0 þ
Xt�1

k¼0

Ii;k:

Assume that Ii,t is a random variable with mean Īt and
variance r2

t . Then,

E½Li;t j L0� ¼ L0 þ
Xt�1

k¼0

E½Ii;k� ¼ L0 þ
Xt�1

k¼0

Īk:

Expectation is over all realizations i. While E [Li,t jL0]

may or may not be influenced by how uncertainty is

modeled, the mean of other nonlinearly related quanti-

ties, such as Ai,t, will definitely be influenced by how

uncertainty is modeled, above and beyond the effect

uncertainty may have on E [Li,t jL0]. For instance, a

deterministic growth model might predict mean Ai,t as

E½Ai;t j L0�} L0 þ
Xt�1

k¼0

Īk

 !2

: ð1Þ

However, it is easily shown (see Appendix C) that the

correct formula should be

E½Ai;t j L0�} L0 þ
Xt�1

k¼0

Īk

 !2

þ
Xt�1

k¼0

r2
t

þ 2
Xt�1

k¼0

Xt�1

l¼kþ1

CovðIi;k; Ii;lÞ: ð2Þ

Eq. 2 reveals that growth models that predict the same

mean diameter increment (i.e., E [Ii,t]) generally predict

different E[Ai,t jL0] depending on the variances and

covariances. In particular, a deterministic growth model

will generally predict a smaller mean biomass when

compared to a stochastic one (i.e., compare Eqs. 2 and

1). Similarly, a stochastic growth model that omits

correlation between length increments (i.e., set Cov(Ii,k,

Ii,l) ¼ 0 in Eq. 2) will result in smaller estimates of

E[Ai,t jL0] than a stochastic growth model that includes

autocorrelated growth (i.e., set Cov(Ii,k, Ii,l) . 0 in Eq.

2). For example, models that aggregate individuals of

similar age/size (i.e., cohort model) to increase compu-

tational efficiency will ignore the strong autocorrelated

growth that individuals typically exhibit (e.g., Fujiwara

et al. 2004, Brienen et al. 2006), potentially generating

biased estimates of E [Ai,t jL0].

So far, Eq. 2 shows how uncertainty affects mean At.

How are these changes in mean At related to changes in

mean biomass? Whether we assume a conventional

scaling (Lt } B
1=3
t ) or a ‘‘fractal biological scaling’’ (Lt }

B
1=4
t ) (West 1999), one percent change in At usually

results in more than one percent change in biomass at

time t (Bt). In other words, (DB/B)/(DA/A) . 1. Thus,

the relative bias in mean At introduced due to incorrect

representation of uncertainty of the stochastic growth

model is exacerbated for estimates of mean biomass.

Are these biases biologically relevant? To answer this

question, we start by defining an empirical allometric

equation Bt ¼ f(Lt). We can approximate future mean

biomass using the delta method. This approximation

can be further simplified if we assume a correlation

matrix R with a lag-1 autoregressive structure and

correlation parameter q. Then, the approximation

becomes

E½Bi;t j Li;0�’ f ðE½Li;t�Þ þ
f 00ðE½Li;t�Þ

2
tr2

� �

þ f 00ðE½Li;t�Þr2
Xt�1

i¼1

ðt � 1Þpi

( )
ð3Þ

(Appendix C). Eq. 3 allows a rough comparison between

a deterministic simulation (set the second and third term

in Eq. 3 to zero), a stochastic simulation without

correlated growth (set the third term in Eq. 3 to zero),

FIG. 3. The relationship between length (L) and the
quantity A, where A is defined to be equal to L2 (dotted black
line). Thick lines are the means of L and A, assuming that L is
deterministic (black line), L is a random variable with a uniform
distribution between 0.5 and 0.9 (green line), or with a uniform
distribution between 0.4 and 1.0 (red line). In all cases, the mean
of L is 0.7. The probability density functions of L and A are
denoted by f(L) and f(A), respectively.
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and a stochastic simulation with correlated growth. Eq.

3 only includes E [Li,t], the variance r2 and the

correlation q. If the correlation parameter is unknown,

one can use the lower and upper bounds for Eq. 3. These

bounds are f(E [Di,t])þ [ f 00(E[Di,t])/2(tr
2) when q¼0 and

f(E [Di,t])þ [ f 00(E [Di,t])/2](t
2r2) when q¼ 1, respectively.

All else being equal, Eq. 3 reveals that the bias

introduced by ignoring the variance and covariance

terms is small (1) for large organisms (i.e., large

f(E [Li,t])); (2) when simulation length is short (i.e., t is

small); (3) when variance and/or correlation are small;

and/or (4) when f 00(E [Li,t])/2 is small.

DISCUSSION

We have explored how very different timber yield

projections can result from simply converting a deter-

ministic model into a stochastic one or by allowing for

persistent individual tree differences in our stochastic

growth model. Our findings, however, do not take into

account other forest processes typically represented in

forest dynamics models such as local tree interactions

(e.g., competition for light) and differential mortality.

These biases are likely to be even larger if we take

differential mortality into account, as individuals

growing slower than average are often less vigorous

and thus have a higher mortality rate (Chao et al. 2008,

Rozendaal et al. 2010). In that case, the culling of these

individuals would lead to even greater differences in the

estimate of future mean biomass. For simplicity, we also

assumed that trees grew independently. This is a widely

used assumption in tropical forest models (e.g., Cham-

bers et al. 2004, Dauber et al. 2005, Brienen and

Zuidema 2007, Grogan et al. 2008, Schulze et al. 2008,

Sebbenn et al. 2008), but it is often not a very realistic

assumption. We acknowledge that allowing for interac-

tion among trees may change our results but, unfortu-

nately, we were not able to derive general results that

accounted for these interactions because this would

depend on the peculiarities of how growth, mortality

and tree interaction are modeled (e.g., different compe-

tition indexes; Moravie et al. 1999). Nevertheless,

preliminary results using an individual-based forest

simulator, parameterized with extensive permanent plot

data from North Carolina (USA), suggest that these

biases arise even in the presence of competition for light

(S. McMahon and J. Clark, unpublished manuscript). It

remains an open question if this would be the case for

other forests as well.

Although we have focused on forest dynamics in our

case study, the same concepts apply to dynamic models

of other organisms that also simulate growth based on a

linear measure of size (e.g., crocodile length, Richards et

al. 2004; curved carapace length of sea-turtles, Mazaris

and Matsinos 2006; fish length, Charles et al. 2008). To

our knowledge, this is the first time it has been

generalized how different representations of uncertainty

on growth affect future biomass estimates. This has

important implications because there is still extensive

use of models with deterministic growth or stochastic

growth that do not allow for persistent individual

differences (e.g., Chambers et al. 2001, 2004, Coates et

al. 2003, Valle et al. 2007, Purves et al. 2008).

Given these results, how can we accurately forecast

timber and fishery yields, forest carbon content, and

other environmental services that depend on biomass

estimates? Three overall recommendations emerge from

our general results. Because second and higher central

moments (variance, skew, and so on) are generally more

difficult to estimate than the first moment (i.e., mean),

our first recommendation is that growth models should

be based on the variable more linearly related to

biomass, thus decreasing the dependence of the esti-

mates of future mean biomass on the correct estimation

of second or higher central moments. For example, tree

growth should be preferentially modeled as basal area

growth instead of diameter growth. The second recom-

mendation is that, if linear measures of growth are

unavoidable (e.g., this is the only available field-based

measurement), careful consideration should be given in

the modeling of the mean and other statistical moments.

This implies the use of sophisticated statistical tools to

correctly partition and estimate the magnitude of the

different sources of uncertainty. Finally, modelers that

aggregate similar individuals into cohorts and represent

them with a single mean individual for computation

efficiency should consider whether or not neglecting

autocorrelated growth from individuals will affect

estimates of future mean biomass.

To anticipate future environmental challenges, man-

agement and policy decisions will increasingly depend

on forecasts from ecological models (Clark et al. 2001,

Purves and Pacala 2008). However, skepticism will

dominate if these models predict disparate results. Thus,

the time has come to give careful consideration on how

uncertainty within these models is represented.
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APPENDIX A

Description of parameter-estimation method (Ecological Archives A021-048-A1).

APPENDIX B

Simulation results from the individually fitted models (Ecological Archives A021-048-A2).

APPENDIX C

Derivation of equations used in the main text (Ecological Archives A021-048-A3).
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