
Computer Programming Skills for Environmental Sciences

Denis Valle, Aaron Berdanier

University Program in Ecology, Duke University, Durham, NC 27708, USA

Citation: Valle, D; Berdanier, A. 2012. Bulletin of the Ecological Society of America, 93(4).

--

Denis Valle (corresponding author): drv4@duke.edu. University Program in Ecology, Duke University,

Durham, NC 27708, USA

Aaron Berdanier: aaron.berdanier@duke.edu. University Program in Ecology, Duke University, Durham,

NC 27708, USA

mailto:drv4@duke.edu
mailto:aaron.berdanier@duke.edu

Introduction

Most undergraduate and graduate science degrees recognize the importance of statistics in the

training of future scientists and include at least one basic statistics course in their curricula. On the other

hand, programming skills are typically seen as a tool just for modelers or quantitative scientists. We

dispute this view and argue that programming skills are extremely useful for almost any scientist,

particularly with the advent of scripted analysis programs (e.g., Matlab and R). For example, these

programming skills enable one to query, preprocess, visualize, and analyze datasets in a much less error-

prone way than spreadsheets. Furthermore, these scripting languages allow for a natural

documentation of the judgment calls that are often needed when preprocessing the data, being a

critical step towards reproducible research (Peng et al. 2006, Borer et al. 2009, Ellison 2010, Reichman

et al. 2011, Michener and Jones 2012). Unfortunately, the use of spreadsheets to store and manipulate

data is still widespread among scientists, probably because programming skills are not yet part of the

formal training of environmental scientists (Jones et al. 2006, Michener and Jones 2012). Here we

advocate for the inclusion of programming skills as part of the core curriculum for environmental

scientists and describe the challenges involved in doing so.

We start this article by illustrating the general usefulness of programming skills with several

tasks that can be efficiently accomplished within these scripted analysis programs. We then report on

the challenges of teaching programming skills and the approaches we have found to be useful, based on

our own experience teaching programming languages to environmental science graduate students at

Duke University. Finally, we conclude with a summary of our thoughts on programming skills for

environmental scientists.

Usefulness of programming skills

In this section, we list and discuss a few tasks that can be efficiently accomplished with

programming skills. Specific examples of these tasks are provided in Appendix 1.

Data pre-processing

Programming skills are critical for data pre-processing, allowing data to be combined, queried,

and summarized. These skills are particularly relevant when using data collected by multiple

researchers, which is becoming more frequent as we strive to understand environmental phenomena

across larger regions and over longer time scales (Michener et al. 1997, Ellison 2010, Reichman et al.

2011, Michener and Jones 2012). For instance, consistency checks and data visualization allows one to

quickly identify odd observations (e.g., spelling errors in species Latin names, birth date that does not

match reported age, diameter measurements taken after the tree is reported to have died, or extreme

values used to represent missing values).

Many of the tasks in data pre-processing are conceptually simple and can be done in regular

spreadsheets. However, this process can be extremely error-prone and time consuming in the absence

of programming skills. Furthermore, the benefit of doing these tasks with a scripting language is that

these languages automatically document all the inherent judgment calls in data preprocessing (e.g.,

elimination of trees with odd diameter measurements or substitution of suspicious diameters by missing

value) and allow the data preprocessing steps to be modified and reproduced effortlessly (Borer et al.

2009, Ellison 2010). Importantly, scripting languages help with data management by avoiding the

proliferation of spread-sheets, a problem that typically occurs when multiple data versions are created

(e.g., ‘raw’ vs. ‘edited’ datasets) and/or a data analysis has multiple steps. Unfortunately, few people

seem to recognize the importance of formal training on information management skills (see related

comments in Nature 2009). This is particularly evident if we consider that data pre-processing is a prior

step to using formal statistical tests and yet only the latter is included in regular curricula.

Forward simulations

Critical intuition and insights can often be gained by creating models and running in silico (vs. in

vivo) experiments; some experiments are even unfeasible otherwise (Peck 2004, CSTA Standards Task

Force 2011). We believe that in silico experiments are particularly powerful didactic tools because it

allows a level of interactivity unavailable otherwise (e.g., multiple in silico experiments can be run

without requiring years of painstaking data collections and considerable funding to set up factorial

experiments). For instance, these simulations allow students to immediately assess the importance of

several model parameters. Furthermore, simulations show that apparently reasonable assumptions

often lead to unrealistic long-term outcomes, challenging students to think of which assumptions are

over-simplistic or all together wrong. It is our opinion that there would be much to gain if graduate

students (as future professors) learned how to create these simulations given their importance as

educational tools.

Numerical optimization

Numerical optimization is routinely used in a wide range of fields, such as statistics (e.g., to find

maximum likelihood estimates), finance (e.g., minimize risk), and transportation (e.g., finding the fastest

route from point A to B). Traditional applications of optimization in environmental sciences have

focused on natural resource management, such as forestry and fisheries (e.g., determining maximum

sustainable yield), but optimization has been increasingly used for research themes as diverse as

protected area design (e.g., determining optimal size, location and number of protected areas to

minimize extinction) (e.g., Wintle et al. 2011) and optimal plant trait combination (e.g., Marks and

Lechowicz 2006). Unfortunately, in the absence of at least some computer programming skill, this

powerful tool is inaccessible for environmental scientists.

Statistics

Computer intensive methods in statistics have arisen to liberate scientists from rather restrictive

distributional assumptions (e.g., normal distribution) and statistics choices (e.g., medians instead of

means), allowing the fit of models and assessment of uncertainties in ways that would be almost

impossible otherwise. These methods include cross-validation, bootstrap, jackknife, permutation tests,

Markov Chain Monte Carlo algorithms (MCMC), among others. Despite their relatively long history (e.g.,

Diaconis and Efron 1983), the most common approach in environmental sciences is still to transform the

data and the research question so that one can use standard statistical tests (e.g., linear regression,

ANOVA) instead of the other way around (i.e., modifying the method to suit the data and research

question) (Ellison and Dennis 2010). An additional benefit of programming some of these computer

intensive statistical methods is that it often makes one reflect on the inner workings of the statistical

procedure. Because these methods tend to be more intuitive than their analytical counterparts, this

process often enhances the understanding of hard-to-grasp concepts (e.g., p-values and confidence

intervals) (Ellison and Dennis 2010).

Challenges and approaches in teaching programming skills

We have listed a few tasks that scripted analysis programs can do, which by no means represent

the entire functionality of these tools. Nevertheless, these tasks illustrate how versatile and useful these

tools can be for an environmental scientist, if he can master it. We provide examples of each one of

these tasks in Appendix 1 together with pseudo-code. The common thread to all these examples is that

they harness the power of computers to do repetitive tasks using predominantly customized code. We

emphasize customized code because one often faces problems that are too specific to be solved by

existing libraries/packages or canned programs.

How can environmental science students learn programming skills? We have taught a

programming skills course for the past two years, which originated from a professor realizing that these

skills could positively affect several existing quantitative courses here at Duke University that also

employed scripted analysis programs (e.g., watershed hydrology, natural resource economics, water

quality management, atmospheric chemistry, energy systems). The main idea was that a course

devoted specifically to programming skills would free these other quantitative courses to spend more

classroom time on discipline specific topics, rather than on teaching students to program. Thus, our

course was implemented with the specific goal of teaching programming skills as a generic tool, with a

heavy emphasis on programming logic rather than program specific syntax. Because of the

interdisciplinary nature of environmental sciences, with different programming languages being used by

different disciplines (e.g., remote sensing and GIS analysts favor Python, statisticians favor R,

econometricians and engineers favor Matlab), the emphasis on logic, rather than syntax, was important.

A widely recognized problem in teaching how to program is that several students feel

intimidated by the steep learning curve (Anderson et al. 2011). One can ease this learning process by

building on students’ existing knowledge. For instance, our approach has been to focus on a wide range

of data management and environmental science problems that are familiar to most of our students and

that can be tackled with simple algorithms (e.g., Appendix 1). Similarly, we can first show how a

particular task would be accomplished in a regular spreadsheet or other GUI driven program, to then

illustrate how it would be done using a programming language. We stimulate students to create

algorithms that work, rather than focusing on improving algorithm efficiency or elegant code. The

dichotomy between programming syntax and logic is exploited by asking students to write pseudo-code,

describing how the problem can be divided into simpler pieces and how each piece will be dealt with,

before effectively attempting to implement a particular algorithm. Visual depictions, using workflow /

data-flow graphs (e.g., as in ArcMap model builder or in Ellison et al. 2006) or work sheets (Hasni and

Lodhi 2011), are often helpful during this process of writing pseudo-code. We believe that these course

characteristics are critical to alleviate the steep learning curve that students experience. Unfortunately,

environmental science programs rarely offer courses on programming skills (Box 1) and standard

introductory programming classes offered by computer science departments seem to focus more on

algorithmic efficiency and on examples that are too abstract to be applicable to environmental science

problems. We provide more details regarding our course structure in Appendix 3.

Conclusion

It has been our experience that programming skills dramatically open student’s analytical

horizons and quickly become indispensable in their toolkit. We acknowledge that defining core courses

for environmental sciences is challenging given its multidisciplinary nature. However, we emphasize that

computer programming skills are pervasive throughout environmental science, as evidenced by the

range of quantitative courses that employ some level of programming (e.g., watershed hydrology,

natural resource economics, water quality management, atmospheric chemistry, energy systems) and

by the demand for these skills in the work force (Box 1). These tools allow data to be queried and

graphed in novel ways and facilitate the customization of optimization routines, forward simulation and

computer intensive statistical procedures. As a result, scientists are empowered to expand the

approaches used in their field, often in ways that could not have been foreseen by the inventers of the

original methodology. Perhaps more importantly, scripting languages document the innumerous data

pre-processing and analysis steps. If these languages do not become part of the formal training of

environmental scientists, current emphasizes on data sharing, reproducible research, and even

statistical fluency (Cassey and Blackburn 2006, Jones et al. 2006, Allison 2009, Borer et al. 2009, Ellison

and Dennis 2010, Vision 2010, Whitlock et al. 2010, Reichman et al. 2011, Whitlock 2011, Michener and

Jones 2012) is unlikely to be effective. We believe that these programming skills will be critical to tackle

21st century environmental problems and should be part of the core curriculum of environmental

sciences.

Box 1. Supply and demand for environmental scientists with computer programming skills.

We performed two surveys to obtain a rough idea of the supply and demand for environmental

scientists with computer programming skills. The details regarding these surveys are given in Appendix

2. We found an overall lack of educational opportunities regarding these skills. Only 4 of the 20 top

environmental science programs in the United States offered courses explicitly mentioning

‘programming’ in their course description. The lack of supply of environmental scientists with computer

programming skills contrasts sharply with the increasing demand for these skills. Based on post-doctoral

advertisements, we found that the demand for environmental scientists with programming skills rose

from 12% in 1999 to 22% in 2011, with an overall average of 16% (Box Fig. 1).

Box Fig. 1. The proportion of post-doctoral advertisements that refer to programming skills increased

substantially over the past 13 years. Continuous line depicts the fitted linear regression.

Acknowledgements

 We thank Andy Read and Varun Swamy for kindly sharing their data on whale movement and

tropical trees, respectively. We thank Gaby Katul for his contribution in conceptualizing and

implementing our programming course, and Jim Clark for creating the original simulations of competing

species that inspired one of our examples. Finally, we are grateful for comments provided by William

Michener, Susan Rodger, Ben Bolker, Jason Roberts, John Fay, Varun Swamy, Gretchen Addington, Maria

Soledad Benitez, Jim Clark, Andria Dawson, Rob Schick, and Ben Vierra.

References

Allison, D. B. 2009. The antidote to bias in research. Science 326:522.
Anderson, M., A. McKenzie, B. Wellman, M. Brown, and S. Vrbsky. 2011. Affecting attitudes in first-year

computer science using syntax-free robotics programming. ACM Inroads 2:51-57.
Borer, E. T., E. W. Seabloom, M. B. Jones, and M. Schildhauer. 2009. Some simple guidelines for effective

data management. Bulletin of the Ecological Society of America 90:205-214.
Cassey, P. and T. M. Blackburn. 2006. Reproducibility and repeatability in ecology. Bioscience 56:958-

959.
CSTA Standards Task Force. 2011. CSTA K-12 Computer Science Standards. Computer Science Teachers

Association (CSTA).
Diaconis, P. and B. Efron. 1983. Computer-Intensive Methods in Statistics. Scientific American:116-130.
Ellison, A. M. 2010. Repeatability and transparency in ecological research. Ecology 91:2536-2539.
Ellison, A. M. and B. Dennis. 2010. Paths to statistical fluency for ecologists. Frontier in Ecology and

Environment 8:362-370.
Ellison, A. M., L. J. Osterweil, L. Clarke, J. L. Hadley, A. Wise, E. Boose, D. R. Foster, A. Hanson, D. Jensen,

P. Kuzeja, E. Riseman, and H. Schultz. 2006. Analytic webs support the synthesis of ecological
data sets. Ecology 87:1345-1358.

Hasni, T. F. and F. Lodhi. 2011. Teaching problem solving effectively. ACM Inroads 2:58-62.
Jones, M. B., M. Schildhauer, O. J. Reichman, and S. Bowers. 2006. The new bioinformatics: integrating

ecological data from the gene to the biosphere. Annual Review of Ecology, Evolution, and
Systematics 37:519-544.

Marks, C. O. and M. J. Lechowicz. 2006. Alternative designs and the evolution of functional diversity. The
American Naturalist 167:55-66.

Michener, W. K., J. W. Brunt, J. J. Helly, T. B. Kirchner, and S. G. Stafford. 1997. Nongeospatial metadata
for the ecological sciences. Ecological Applications 7:330-342.

Michener, W. K. and M. B. Jones. 2012. Ecoinformatics: supporting ecology as a data-intensive science.
Trends in Ecology and Evolution 27:85-93.

Nature. 2009. Data's shameful neglect. Nature 461:145-145.
Peck, S. L. 2004. Simulation as experiment: a philosophycal reassessment for biological modeling. Trends

in Ecology and Evolution 19:530-534.
Peng, R. D., F. Dominici, and S. L. Zeger. 2006. Reproducible epidemiologic research. American Journal of

Epidemiology 163.
Reichman, O. J., M. B. Jones, and M. Schildhauer. 2011. Challenges and opportunities of open data in

ecology. Science 331:703-705.
Vision, T. J. 2010. Open data and the social contract of scientific publishing. Bioscience 60:330-330.
Whitlock, M. C. 2011. Data archiving in ecology and evolution: best practices. Trends in Ecology and

Evolution 26:61-65.
Whitlock, M. C., M. A. McPeek, M. D. Rausher, L. Rieseberg, and A. J. Moore. 2010. Data archiving. The

American Naturalist 175:145-146.
Wintle, B. A., S. A. Bekessy, D. A. Keith, B. W. van Wilgen, M. Cabeza, B. Schroder, S. B. Carvalho, A.

Falcucci, L. Maiorano, T. J. Regan, C. Rondinini, L. Biotani, and H. P. Possingham. 2011.
Ecological-economic optimization of biodiversity conservation under climate change. Nature
Climate Change 1:335-359.

Appendix 1. Examples of the tasks cited in the main text

Data pre-processing

Our first example illustrates how programming skills can be helpful to combine data from

multiple files. A researcher has tagged pilot whales and these tags record information on animal

movement (i.e., azimuth, pitch, and roll are measured) and feeding behavior (e.g., determined based on

the clicks made by the animal to echolocate its prey) in separate files. The researcher wants to

determine if, and how, the animal changes its movement pattern when it is close to its prey. To do this,

we need to combine both of these datasets to compare body movement when the animal is “buzzing”

(i.e., as the animal rapidly approaches a prey, the echolocation clicks occur at higher and higher

frequencies, sounding like a buzz to human ears) versus, say, body movement 10 seconds before and

after that. Because the times at which the different datasets were collected differ (i.e., angle

measurements are taken every 0.8 seconds while the feeding behavior data only includes when the

“buzzing” started and ended), it is not straightforward to merge them without creating a customized

code. Our results after combining these datasets indicate that the animal tends to move considerably

more when close to its prey (Fig. 1).

Fig. 1. Pilot whales move more while feeding. Animal movement 10 seconds prior (-10 sec.), during

(feed), and 10 seconds after (+10 sec.) feeding is displayed. We defined movement as

 , where is the angle measurement at time t, this way avoiding problems with

circular statistics.

Pseudo-code

1) Determine each buzz duration
2) For each buzz record, summarize the angle measurements:

A - taken during the buzz event
B – taken 10 seconds before the buzz event
C – taken 10 seconds after the buzz event

3) Store these angle measurement summaries

The next example uses long-term tree monitoring data from a tropical forest (Clark and Clark

2006) to illustrate how programming skills can be useful to identify potentially problematic

observations. One way to identify problematic diameter measurements is to flag trees that are either

unrealistically small or large. However, a subtler problem refers to diameter measurements that are

unusual because they imply a diameter growth rate that is substantially different from the past or future

growth rates of the same tree. We start by sub-setting the trees that have never changed the height of

diameter measurement of the species Simarouba amara, yielding ~2,800 diameter measurements from

336 trees measured multiple times. Suppose we want to examine in greater detail trees that have

diameter increments deemed unusual, here arbitrarily defined to be greater than 25 mm yr-1 or smaller

than -5 mm yr-1. The pseudo-code would be:

Pseudo-code

1) Subset the trees that have never changed the height of diameter measurement
2) For year i to year i+1:

A - Calculate diameter increment for all trees
B - Flag trees that have diameter increment greater than the 25 mm yr-1 or smaller than -5 mm
yr-1

3) Subset the trees that were flagged at least once for a more detailed inspection

The plot of the history of diameter increments for all the trees deemed to have unusual

diameter increments (Panel B in Fig. 2) shows that some trees were incorrectly flagged (e.g., trees 2 and

5 seem to be consistently growing less and less) while other trees have suspicious patterns (e.g., trees 3

and 4 show two diameter increments that stand out from the rest).

Fig. 2. Identification of trees with odd patterns in diameter growth. Panel A depicts the histogram of all

diameter increments, with the thresholds used to identify unusual diameter increments highlighted by

the grey vertical lines. Panel B depicts the sequence of diameter increments for trees with at least one

unusual diameter increment. In this panel, diameter increment for tree i at time t (DINCi,t) was

standardized as

 , ensuring that it lied between -0.5 and 0.5.

Forward simulations

One of the oldest yet unresolved ecological questions refers to how multiple species coexist

(Siepielski and McPeek 2010). To illustrate the problem, we create a very simple model of two

competing species. Say our hypothetical site is occupied by N individuals. In the beginning of our

simulation, half of these individuals belong to one species () while the other half belongs to the

other (). We assume that these species have the same mortality rate and that, once an individual

dies, its patch is occupied by a new individual of species 1 with probability

 and by species 2

otherwise. Since the simulation starts with the same number of individuals for each species and these

species have identical demographic rates, one could expect that coexistence is guaranteed. Simulation

results using the pseudo-code below can, however, quickly debunk this naïve expectation.

Pseudo-code

1) Set the initial number of individuals (N, N1,1, and N1,2) and mortality rate.
2) For each year:

A – determine the number of individuals that die from each species
B – determine which species will occupy each of these vacant areas

While deterministic simulations would indeed indicate coexistence, our simulation results show

that adding stochasticity fundamentally changes the predicted outcomes, indicating that coexistence is

relatively rare (Panel B in Fig. 3). These simulations allow students to quickly assess the importance of

several model parameters to ensure coexistence. For example, students can evaluate how simulation

outcomes change as the overall number of individuals changes (which illustrates that extinction happens

faster as habitat size decreases). These simulations also challenge students to think of which types of

processes could be in place to increase the probability of coexistence (e.g., rare species advantage,

where mortality rate decreases as the density of conspecific individuals decreases; or spatial aggregation

of species, where patch occupancy probability depends on the species of neighboring individuals).

Fig. 3. Coexistence is rare even if species have the same demographic rates and initial population size.

Panel A shows the result of one simulation. Panel B displays the summary results from 500 simulations,

revealing the proportion of simulations in which species one dominated and species two went extinct

(red), species two dominated and species one went extinct (blue), or none went extinct (green). Our

simulations started with N=10,000, mortality rate of 0.2, and simulation length of 50,000 years.

Optimization

A conservation organization is interested in increasing the population of a particular endangered

species to 100 individuals 20 years from now. Because resources are scarce, these resources will be

considered wasted if the management action fails but also if this action results in a much larger overall

population than originally targeted. Therefore, a researcher might ask by how much should one (or

more) demographic parameter be increased to achieve the desired population size in year 20. This

question can be recast into an optimization problem, where we want to find the parameter value that

minimizes the distance between our target and the simulated population size. Here we assume that this

is a stage-structured population, currently comprised of 11 pups, 9 juveniles, and 30 adults, and that the

transition matrix A was estimated to be:

where and are the probabilities of pups becoming juveniles, juveniles remaining

juveniles, juveniles becoming adults, adults remaining adults, and the per capita fecundity rate,

respectively. Parameter values were taken from Wielgus et al. (2008), corresponding to the sea lion

population at the Granito island. We choose to optimize just the fecundity parameter. We use the

following pseudo-code:

Pseudo-code

1) Forward simulation part:
Create a function to predict future population size, based on the set of demographic parameters
provided by the user. This function will:

A - Create the transition matrix A using the provided demographic parameters.

B - Set the vector with the initial number of individuals at each stage to

C - For year 1 to year 20, update N by calculating
D - Sum the number of individuals over all stages and output results to user

2) Optimization part:

Use an optimizer to determine the fecundity rate that would make the projected population size in year
20 as close as possible to 100

Our results indicate that the fecundity rate would have to increase from 0.53 to 0.96 to ensure that this

population will have 100 individuals 20 years from now.

Statistics

We illustrate computer intensive methods in statistics by analyzing spatial patterns of tropical trees.

These spatial patterns can provide indirect information on dispersal and mortality of these tree species,

yielding insights regarding the mechanisms that shape community structure and that allow so many

species to coexist. Several metrics have been used to determine if these trees are more clumped or

dispersed than expected (Condit et al. 2000, Seidler and Plotkin 2006, Terborgh et al. 2008), partly

because this analysis does not fit nicely into standard statistical tests with their corresponding normal

assumptions. Here we develop yet another metric to determine how clumped each species is. Our

approach is to calculate the mean nearest conspecific neighbor distance (NCND) for the saplings of each

species. Then, we estimate the p-value of this statistic by generating the NCND distribution under the

null hypothesis that these saplings are randomly distributed, akin to a randomization test. This can be

done using the following pseudo-code:

Pseudo-code

1) For each species i, calculate:
A – the number of saplings from that species and the mean nearest conspecific neighbor

distance. Denote these and
 , respectively.

B – randomly distribute Ni saplings across the plot and calculate
 .

C – Repeat B 1000 times and estimate the p-value as

Using data from four plots located in the Peruvian Amazon, two faunally intact and two hunted,

our results suggest that saplings from most tree species tend to have a clumped spatial distribution

(Panel A in Fig. 4). However, when we disaggregate by the faunal status of each plot, our results indicate

that there tends to be more species classified as dispersed or very dispersed in faunally intact sites,

whereas hunted sites tend to have more species classified as clustered (Panel B in Fig. 4). These results

might be attributed to the presence of large bodied seed dispersers in these faunally intact sites.

Fig. 4. Tree species are spatially clustered but hunted sites have more clustering than faunally intact

sites. Panel A shows the relationship between mean nearest conspecific neighbor distance (NCND) and

the number of saplings within the plot on a log-scale. Red lines (solid and dashed lines are mean and

95% confidence intervals, respectively) indicate the expected pattern if saplings were distributed at

random, superimposed on the data (each point represents a species within a particular site). Panel B

shows a kernel density estimate of the p-value (estimated from randomization tests) distribution for two

hunted (red) and two faunally intact (blue) plots.

We note that the implementation of this randomization test illustrates the meaning of p-values

in a more transparent and intuitive manner than using a GUI driven interface from a statistical package,

enabling a more profound comprehension of statistics by the student.

References for Appendix 1

Allison, D. B. 2009. The antidote to bias in research. Science 326:522.
Anderson, M., A. McKenzie, B. Wellman, M. Brown, and S. Vrbsky. 2011. Affecting attitudes in first-year

computer science using syntax-free robotics programming. ACM Inroads 2:51-57.
Borer, E. T., E. W. Seabloom, M. B. Jones, and M. Schildhauer. 2009. Some simple guidelines for effective

data management. Bulletin of the Ecological Society of America 90:205-214.
Cassey, P. and T. M. Blackburn. 2006. Reproducibility and repeatability in ecology. Bioscience 56:958-

959.
Clark, D. B. and D. A. Clark. 2006. Tree growth, mortality, physical condition, and microsite in an old-

growth lowland tropical rain forest. Ecology 87:2132.
Condit, R., P. S. Ashton, P. Baker, S. Bunyavejchewin, S. Gunatilleke, N. Gunatilleke, S. P. Hubbell, R. B.

Foster, A. Itoh, J. V. Lafrankie, H. S. Lee, E. Losos, N. Manokaran, R. Sukumar, and T. Yamakura.
2000. Spatial patterns in the distribution of tropical tree species. Science 288:1414-1418.

CSTA Standards Task Force. 2011. CSTA K-12 Computer Science Standards. Computer Science Teachers
Association (CSTA).

Diaconis, P. and B. Efron. 1983. Computer-Intensive Methods in Statistics. Scientific American:116-130.
Ellison, A. M. 2010. Repeatability and transparency in ecological research. Ecology 91:2536-2539.
Ellison, A. M. and B. Dennis. 2010. Paths to statistical fluency for ecologists. Frontier in Ecology and

Environment 8:362-370.
Ellison, A. M., L. J. Osterweil, L. Clarke, J. L. Hadley, A. Wise, E. Boose, D. R. Foster, A. Hanson, D. Jensen,

P. Kuzeja, E. Riseman, and H. Schultz. 2006. Analytic webs support the synthesis of ecological
data sets. Ecology 87:1345-1358.

Hasni, T. F. and F. Lodhi. 2011. Teaching problem solving effectively. ACM Inroads 2:58-62.
Jones, M. B., M. Schildhauer, O. J. Reichman, and S. Bowers. 2006. The new bioinformatics: integrating

ecological data from the gene to the biosphere. Annual Review of Ecology, Evolution, and
Systematics 37:519-544.

Marks, C. O. and M. J. Lechowicz. 2006. Alternative designs and the evolution of functional diversity. The
American Naturalist 167:55-66.

Michener, W. K., J. W. Brunt, J. J. Helly, T. B. Kirchner, and S. G. Stafford. 1997. Nongeospatial metadata
for the ecological sciences. Ecological Applications 7:330-342.

Michener, W. K. and M. B. Jones. 2012. Ecoinformatics: supporting ecology as a data-intensive science.
Trends in Ecology and Evolution 27:85-93.

Nature. 2009. Data's shameful neglect. Nature 461:145-145.
Peck, S. L. 2004. Simulation as experiment: a philosophycal reassessment for biological modeling. Trends

in Ecology and Evolution 19:530-534.
Peng, R. D., F. Dominici, and S. L. Zeger. 2006. Reproducible epidemiologic research. American Journal of

Epidemiology 163.
Reichman, O. J., M. B. Jones, and M. Schildhauer. 2011. Challenges and opportunities of open data in

ecology. Science 331:703-705.
Seidler, T. G. and J. B. Plotkin. 2006. Seed dispersal and spatial pattern in tropical trees. PLOS Biology 4.

Siepielski, A. M. and M. A. McPeek. 2010. On the evidence for species coexistence: a critique of the
coexistence program. Ecology 91:3153-3164.

Terborgh, J., G. Nunez-Iturri, N. C. A. Pitman, F. H. C. Valverde, P. Alvarez, V. Swamy, E. G. Pringle, and C.
E. T. Paine. 2008. Tree recruitment in an empty forest. Ecology 89:1757-1768.

Vision, T. J. 2010. Open data and the social contract of scientific publishing. Bioscience 60:330-330.
Whitlock, M. C. 2011. Data archiving in ecology and evolution: best practices. Trends in Ecology and

Evolution 26:61-65.
Whitlock, M. C., M. A. McPeek, M. D. Rausher, L. Rieseberg, and A. J. Moore. 2010. Data archiving. The

American Naturalist 175:145-146.
Wielgus, J., M. Gonzalez-Suarez, D. Aurioles-Gamboa, and L. R. Gerber. 2008. A noninvasive

demographic assessment of sea lions based on stage-specific abundances. Ecological
Applications 18:1287-1296.

Wintle, B. A., S. A. Bekessy, D. A. Keith, B. W. van Wilgen, M. Cabeza, B. Schroder, S. B. Carvalho, A.
Falcucci, L. Maiorano, T. J. Regan, C. Rondinini, L. Biotani, and H. P. Possingham. 2011.
Ecological-economic optimization of biodiversity conservation under climate change. Nature
Climate Change 1:335-359.

Appendix 2. Description of the surveys

We performed two surveys, examining 1) course offerings from environmental science

programs in the United States, and 2) trends in post-doctoral advertisements that mention computer

programming.

We studied the 20 top environmental science programs in the United States, as ranked by the

US News and World Report (2011, http://www.usnews.com/education/worlds-best-universities-

rankings/best-universities-environmental-sciences). We searched the most recent course catalogs and

bulletins of these programs for course descriptions that mentioned 'programming' or 'computation' and

excluded courses that listed those as prerequisite skills, limiting our results to courses that teach

computer programming to environmental scientists. This survey could potentially miss occasional course

offerings, but demonstrates programmatic investment in computer programming education.

We also surveyed trends in post-doctoral advertisements posted to the ECOLOG email list

between January 1, 2000 and March 20, 2012 (http://listserv.umd.edu/archives/ecolog-l.html). We

identified emails that contained "postdoc” or “post-doc” or “post doc" in the subject and then subsetted

the ones that contained "programming” or “computation” or “matlab” or “C++” or “Python” or “Visual

Basic" in the message text. We removed duplicates and replies (i.e., containing "Re: " in the subject),

resulting in 2606 total post-doc advertisements. Then, we summarized the results by year for analysis.

http://www.usnews.com/education/worlds-best-universities-rankings/best-universities-environmental-sciences
http://www.usnews.com/education/worlds-best-universities-rankings/best-universities-environmental-sciences
http://listserv.umd.edu/archives/ecolog-l.html

Appendix 3. Course structure

As mentioned in the main text, we target a wide range of data management and environmental
science problems that are familiar to most of our students and that can be tackled with simple
algorithms. As a result, we avoid simply listing the commands and explaining what they do. Rather, we
focus on how to accomplish different real-world tasks. Our course uses R mainly because it is free; as a
result, students do not need to worry about paying exorbitant license fees if they do not stay in
academia. Furthermore, R is a highly versatile tool, with extensive documentation available online, and
supported by a large community of users.

We divide our course into three main sections of approximately the same length. The first
section covers exploratory data analysis / data visualization, reproducible research and effective data
management, introducing the basic commands and syntax along the way. The second section introduces
loops as the key to harness the power of computer. Finally, the final section brings all these concepts
together by applying them to several real-world applications.

Data forms the basis of our course. Thus, our first section starts by describing how to import and
export data and how to view data. We then lay-out the bread-and-butter tools for exploratory data
analysis. We show how 2-D graphics (e.g., scatter plots, box-plots, histograms, bar-plots, pie-charts) can
be easily created and used to identify outliers or extreme values that are used as missing data code. We
also introduce Boolean logic to allow students to subset and query data in multiple ways. We emphasize
the importance of consistency checks. For instance, one may receive data on the different land cover
areas within a buffer of radius r around multiple cities. In this case, one can easily sum the area of each
land use type to see if this sum equals the expected buffer size . Similarly, one can check for trees
that have shrunk or people that are yet to be born. Fancier data visualizations are introduced at the end
of the first section, including locally weighted polynomial regression (LOWESS), smoothed histograms,
conditional plots, the usage of color and symbols to add a third dimension in 2-D plots (e.g., heat map,
colored scatter-plots or colored box-plots), and finally 3-D graphs (e.g., surface plots and 3-D scatter
plots).

Throughout this first session, we reiterate the advantages of using scripted analysis programs
regarding data management and reproducible science. For instance, by keeping only the initial raw and
the final edited dataset, one avoids the proliferation of spreadsheets that occurs even for well organized
researchers. Furthermore, all judgment calls regarding deleted or imputed data points, as well as plain
mistakes, are automatically recorded within the script.

The second session focuses predominantly on loops. In our experience, recursive structures,
such as loops, are the major stumbling block for students, particularly for those with no or little
programming experience. Thus, we spend considerable time building familiarity with loops and flow
commands (e.g., if conditions). We often start by writing multiple lines of code to illustrate how a
particular repetitive task would be solved in the absence of loops. We then draw the student’s attention
to the patterns that emerge from these multiple lines of code, which form the basis for creating a
succinct loop. We employ abstract examples (e.g., create a series of even numbers, Fibonacci numbers,
prime numbers, calculate 10 factorial) and applied examples (e.g., importing multiple data files that
have similar names - ‘rain1.txt’, ‘rain2.txt’, ‘rain3.txt’; creating multiple histograms of variables in the
dataset; projecting future population size) to fix ideas. There is often considerable heterogeneity among
students regarding how fast they pick up these concepts, which may be fruitfully exploited by pairing
individuals with different skills. At the end of this session, we show how one can create customized

functions, which allows for a more compartimentalized code and is the gateway for optimization
procedures.

The third session aims at bringing all these concepts together. We target vastly different
problems that nevertheless rely on the same building blocks introduced in earlier sessions, such as loops
and Boolean logic. These examples involve data management, building complex figures, optimization,
computer intensive statistical methods, and forward simulations (e.g., Appendix 1). During this session,
we emphasize that these tasks are not mutually exclusive. For instance, an optimization problem may
require forward simulations (e.g., optimal timber harvesting) while a computer intensive statistical
methods may rely on optimization (e.g., bootstrap). Our goal here is to show how the standard toolbox
of environmental scientists can be dramatically expanded by creatively combining these different tools
to solve real-world problems.

Overall, our teaching strategy is to stimulate students to create algorithms that work, rather
than focusing on improving algorithm efficiency or elegant code. For example, we focus predominantly
on loops, even if the problem can be easily vectorized. Our students learn programming skills by
practicing, mainly through weekly programming tasks. While other quantitative courses typically provide
code that need to be slightly tweaked to answer the assignments, we prefer not to provide this baseline
code. In fact, we believe that long lasting programming skills can only be acquired if one learns how to
piece together the different commands that have been taught and how to troubleshoot their algorithm.
In these weekly tasks, we try to show how the concepts in class can be used in several different
contexts, as well as combined with each other. For example, while in class we worked on optimization as
a tool for fitting a nonlinear curve to data, the weekly homework could include an example of optimizing
returns on timber yield, which combines a forward simulator and an optimizer to determine the optimal
harvest rate. We then provide our own solution code for these weekly tasks. By doing so, we hope to
illustrate how different approaches exist to solve the same problem, and to foster good coding practices
(e.g., using indentation and comments, avoiding hardwired numbers, creating compartmentalized code,
etc.).

Throughout the course, we also avoid explaining each command in detail, rather exhorting
students to seek information on the web. We find this to be important to ensure that, by the end of the
course, the students are fully independent of the instructor, being capable of searching for information
and understanding how a command not covered in class works.

