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Introduction 

Most undergraduate and graduate science degrees recognize the importance of statistics in the 

training of future scientists and include at least one basic statistics course in their curricula. On the other 

hand, programming skills are typically seen as a tool just for modelers or quantitative scientists. We 

dispute this view and argue that programming skills are extremely useful for almost any scientist, 

particularly with the advent of scripted analysis programs (e.g., Matlab and R). For example, these 

programming skills enable one to query, preprocess, visualize, and analyze datasets in a much less error-

prone way than spreadsheets. Furthermore, these scripting languages allow for a natural 

documentation of the judgment calls that are often needed when preprocessing the data, being a 

critical step towards reproducible research (Peng et al. 2006, Borer et al. 2009, Ellison 2010, Reichman 

et al. 2011, Michener and Jones 2012). Unfortunately, the use of spreadsheets to store and manipulate 

data is still widespread among scientists, probably because programming skills are not yet part of the 

formal training of environmental scientists (Jones et al. 2006, Michener and Jones 2012). Here we 

advocate for the inclusion of programming skills as part of the core curriculum for environmental 

scientists and describe the challenges involved in doing so. 

We start this article by illustrating the general usefulness of programming skills with several 

tasks that can be efficiently accomplished within these scripted analysis programs. We then report on 

the challenges of teaching programming skills and the approaches we have found to be useful, based on 

our own experience teaching programming languages to environmental science graduate students at 

Duke University. Finally, we conclude with a summary of our thoughts on programming skills for 

environmental scientists. 

 

  



Usefulness of programming skills  

In this section, we list and discuss a few tasks that can be efficiently accomplished with 

programming skills. Specific examples of these tasks are provided in Appendix 1. 

Data pre-processing 

Programming skills are critical for data pre-processing, allowing data to be combined, queried, 

and summarized. These skills are particularly relevant when using data collected by multiple 

researchers, which is becoming more frequent as we strive to understand environmental phenomena 

across larger regions and over longer time scales (Michener et al. 1997, Ellison 2010, Reichman et al. 

2011, Michener and Jones 2012). For instance, consistency checks and data visualization allows one to 

quickly identify odd observations (e.g., spelling errors in species Latin names, birth date that does not 

match reported age, diameter measurements taken after the tree is reported to have died, or extreme 

values used to represent missing values).  

Many of the tasks in data pre-processing are conceptually simple and can be done in regular 

spreadsheets. However, this process can be extremely error-prone and time consuming in the absence 

of programming skills. Furthermore, the benefit of doing these tasks with a scripting language is that 

these languages automatically document all the inherent judgment calls in data preprocessing (e.g., 

elimination of trees with odd diameter measurements or substitution of suspicious diameters by missing 

value) and allow the data preprocessing steps to be modified and reproduced effortlessly (Borer et al. 

2009, Ellison 2010). Importantly, scripting languages help with data management by avoiding the 

proliferation of spread-sheets, a problem that typically occurs when multiple data versions are created 

(e.g., ‘raw’ vs. ‘edited’ datasets) and/or a data analysis has multiple steps. Unfortunately, few people 

seem to recognize the importance of formal training on information management skills (see related 

comments in Nature 2009). This is particularly evident if we consider that data pre-processing is a prior 

step to using formal statistical tests and yet only the latter is included in regular curricula. 



Forward simulations 

Critical intuition and insights can often be gained by creating models and running in silico (vs. in 

vivo) experiments; some experiments are even unfeasible otherwise (Peck 2004, CSTA Standards Task 

Force 2011). We believe that in silico experiments are particularly powerful didactic tools because it 

allows a level of interactivity unavailable otherwise (e.g., multiple in silico experiments can be run 

without requiring years of painstaking data collections and considerable funding to set up factorial 

experiments). For instance, these simulations allow students to immediately assess the importance of 

several model parameters. Furthermore, simulations show that apparently reasonable assumptions 

often lead to unrealistic long-term outcomes, challenging students to think of which assumptions are 

over-simplistic or all together wrong. It is our opinion that there would be much to gain if graduate 

students (as future professors) learned how to create these simulations given their importance as 

educational tools. 

Numerical optimization 

Numerical optimization is routinely used in a wide range of fields, such as statistics (e.g., to find 

maximum likelihood estimates), finance (e.g., minimize risk), and transportation (e.g., finding the fastest 

route from point A to B). Traditional applications of optimization in environmental sciences have 

focused on natural resource management, such as forestry and fisheries (e.g., determining maximum 

sustainable yield), but optimization has been increasingly used for research themes as diverse as 

protected area design (e.g., determining optimal size, location and number of protected areas to 

minimize extinction) (e.g., Wintle et al. 2011) and optimal plant trait combination (e.g., Marks and 

Lechowicz 2006). Unfortunately, in the absence of at least some computer programming skill, this 

powerful tool is inaccessible for environmental scientists. 

  



Statistics 

Computer intensive methods in statistics have arisen to liberate scientists from rather restrictive 

distributional assumptions (e.g., normal distribution) and statistics choices (e.g., medians instead of 

means), allowing the fit of models and assessment of uncertainties in ways that would be almost 

impossible otherwise. These methods include cross-validation, bootstrap, jackknife, permutation tests, 

Markov Chain Monte Carlo algorithms (MCMC), among others. Despite their relatively long history (e.g., 

Diaconis and Efron 1983), the most common approach in environmental sciences is still to transform the 

data and the research question so that one can use standard statistical tests (e.g., linear regression, 

ANOVA) instead of the other way around (i.e., modifying the method to suit the data and research 

question) (Ellison and Dennis 2010). An additional benefit of programming some of these computer 

intensive statistical methods is that it often makes one reflect on the inner workings of the statistical 

procedure. Because these methods tend to be more intuitive than their analytical counterparts, this 

process often enhances the understanding of hard-to-grasp concepts (e.g., p-values and confidence 

intervals) (Ellison and Dennis 2010). 

 

Challenges and approaches in teaching programming skills  

We have listed a few tasks that scripted analysis programs can do, which by no means represent 

the entire functionality of these tools. Nevertheless, these tasks illustrate how versatile and useful these 

tools can be for an environmental scientist, if he can master it. We provide examples of each one of 

these tasks in Appendix 1 together with pseudo-code. The common thread to all these examples is that 

they harness the power of computers to do repetitive tasks using predominantly customized code. We 

emphasize customized code because one often faces problems that are too specific to be solved by 

existing libraries/packages or canned programs.  



How can environmental science students learn programming skills? We have taught a 

programming skills course for the past two years, which originated from a professor realizing that these 

skills could positively affect several existing quantitative courses here at Duke University that also 

employed scripted analysis programs (e.g., watershed hydrology, natural resource economics, water 

quality management, atmospheric chemistry, energy systems).  The main idea was that a course 

devoted specifically to programming skills would free these other quantitative courses to spend more 

classroom time on discipline specific topics, rather than on teaching students to program. Thus, our 

course was implemented with the specific goal of teaching programming skills as a generic tool, with a 

heavy emphasis on programming logic rather than program specific syntax. Because of the 

interdisciplinary nature of environmental sciences, with different programming languages being used by 

different disciplines (e.g., remote sensing and GIS analysts favor Python, statisticians favor R, 

econometricians and engineers favor Matlab), the emphasis on logic, rather than syntax, was important.  

A widely recognized problem in teaching how to program is that several students feel 

intimidated by the steep learning curve (Anderson et al. 2011). One can ease this learning process by 

building on students’ existing knowledge. For instance, our approach has been to focus on a wide range 

of data management and environmental science problems that are familiar to most of our students and 

that can be tackled with simple algorithms (e.g., Appendix 1). Similarly, we can first show how a 

particular task would be accomplished in a regular spreadsheet or other GUI driven program, to then 

illustrate how it would be done using a programming language. We stimulate students to create 

algorithms that work, rather than focusing on improving algorithm efficiency or elegant code. The 

dichotomy between programming syntax and logic is exploited by asking students to write pseudo-code, 

describing how the problem can be divided into simpler pieces and how each piece will be dealt with, 

before effectively attempting to implement a particular algorithm. Visual depictions, using workflow / 

data-flow graphs (e.g., as in ArcMap model builder or in Ellison et al. 2006) or work sheets (Hasni and 



Lodhi 2011), are often helpful during this process of writing pseudo-code. We believe that these course 

characteristics are critical to alleviate the steep learning curve that students experience. Unfortunately, 

environmental science programs rarely offer courses on programming skills (Box 1) and standard 

introductory programming classes offered by computer science departments seem to focus more on 

algorithmic efficiency and on examples that are too abstract to be applicable to environmental science 

problems. We provide more details regarding our course structure in Appendix 3. 

 

Conclusion 

It has been our experience that programming skills dramatically open student’s analytical 

horizons and quickly become indispensable in their toolkit. We acknowledge that defining core courses 

for environmental sciences is challenging given its multidisciplinary nature. However, we emphasize that 

computer programming skills are pervasive throughout environmental science, as evidenced by the 

range of quantitative courses that employ some level of programming (e.g., watershed hydrology, 

natural resource economics, water quality management, atmospheric chemistry, energy systems) and 

by the demand for these skills in the work force (Box 1). These tools allow data to be queried and 

graphed in novel ways and facilitate the customization of optimization routines, forward simulation and 

computer intensive statistical procedures. As a result, scientists are empowered to expand the 

approaches used in their field, often in ways that could not have been foreseen by the inventers of the 

original methodology. Perhaps more importantly, scripting languages document the innumerous data 

pre-processing and analysis steps. If these languages do not become part of the formal training of 

environmental scientists, current emphasizes on data sharing, reproducible research, and even 

statistical fluency (Cassey and Blackburn 2006, Jones et al. 2006, Allison 2009, Borer et al. 2009, Ellison 

and Dennis 2010, Vision 2010, Whitlock et al. 2010, Reichman et al. 2011, Whitlock 2011, Michener and 

Jones 2012) is unlikely to be effective. We believe that these programming skills will be critical to tackle 



21st century environmental problems and should be part of the core curriculum of environmental 

sciences. 

  



Box 1. Supply and demand for environmental scientists with computer programming skills. 

We performed two surveys to obtain a rough idea of the supply and demand for environmental 

scientists with computer programming skills. The details regarding these surveys are given in Appendix 

2. We found an overall lack of educational opportunities regarding these skills. Only 4 of the 20 top 

environmental science programs in the United States offered courses explicitly mentioning 

‘programming’ in their course description. The lack of supply of environmental scientists with computer 

programming skills contrasts sharply with the increasing demand for these skills. Based on post-doctoral 

advertisements, we found that the demand for environmental scientists with programming skills rose 

from 12% in 1999 to 22% in 2011, with an overall average of 16% (Box Fig. 1).  

 

Box Fig. 1. The proportion of post-doctoral advertisements that refer to programming skills increased 

substantially over the past 13 years. Continuous line depicts the fitted linear regression. 
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Appendix 1. Examples of the tasks cited in the main text 

Data pre-processing 

Our first example illustrates how programming skills can be helpful to combine data from 

multiple files. A researcher has tagged pilot whales and these tags record information on animal 

movement (i.e., azimuth, pitch, and roll are measured) and feeding behavior (e.g., determined based on 

the clicks made by the animal to echolocate its prey) in separate files. The researcher wants to 

determine if, and how, the animal changes its movement pattern when it is close to its prey. To do this, 

we need to combine both of these datasets to compare body movement when the animal is “buzzing” 

(i.e., as the animal rapidly approaches a prey, the echolocation clicks occur at higher and higher 

frequencies, sounding like a buzz to human ears) versus, say, body movement 10 seconds before and 

after that. Because the times at which the different datasets were collected differ (i.e., angle 

measurements are taken every 0.8 seconds while the feeding behavior data only includes when the 

“buzzing” started and ended), it is not straightforward to merge them without creating a customized 

code. Our results after combining these datasets indicate that the animal tends to move considerably 

more when close to its prey (Fig. 1). 

 

Fig. 1. Pilot whales move more while feeding. Animal movement 10 seconds prior (-10 sec.), during 

(feed), and 10 seconds after (+10 sec.) feeding is displayed. We defined movement as         

                    , where    is the angle measurement at time t, this way avoiding problems with 

circular statistics. 

 

 

 



Pseudo-code 
 

1) Determine each buzz duration 
2) For each buzz record, summarize the angle measurements: 

A - taken during the buzz event 
B – taken 10 seconds before the buzz event 
C – taken 10 seconds after the buzz event 

3) Store these angle measurement summaries 

 

The next example uses long-term tree monitoring data from a tropical forest (Clark and Clark 

2006) to illustrate how programming skills can be useful to identify potentially problematic 

observations. One way to identify problematic diameter measurements is to flag trees that are either 

unrealistically small or large. However, a subtler problem refers to diameter measurements that are 

unusual because they imply a diameter growth rate that is substantially different from the past or future 

growth rates of the same tree. We start by sub-setting the trees that have never changed the height of 

diameter measurement of the species Simarouba amara, yielding ~2,800 diameter measurements from 

336 trees measured multiple times. Suppose we want to examine in greater detail trees that have 

diameter increments deemed unusual, here arbitrarily defined to be greater than 25 mm yr-1 or smaller 

than -5 mm yr-1. The pseudo-code would be: 

Pseudo-code 
 

1) Subset the trees that have never changed the height of diameter measurement 
2) For year i to year i+1: 

A - Calculate diameter increment for all trees 
B - Flag trees that have diameter increment greater than the 25 mm yr-1 or smaller than -5 mm 
yr-1 

3) Subset the trees that were flagged at least once for a more detailed inspection 

 

The plot of the history of diameter increments for all the trees deemed to have unusual 

diameter increments (Panel B in Fig. 2) shows that some trees were incorrectly flagged (e.g., trees 2 and 

5 seem to be consistently growing less and less) while other trees have suspicious patterns (e.g., trees 3 

and 4 show two diameter increments that stand out from the rest). 



 

Fig. 2. Identification of trees with odd patterns in diameter growth. Panel A depicts the histogram of all 

diameter increments, with the thresholds used to identify unusual diameter increments highlighted by 

the grey vertical lines. Panel B depicts the sequence of diameter increments for trees with at least one 

unusual diameter increment. In this panel, diameter increment for tree i at time t (DINCi,t) was 

standardized as 
                      

                                
    , ensuring that it lied between -0.5 and 0.5. 

 

Forward simulations 

One of the oldest yet unresolved ecological questions refers to how multiple species coexist 

(Siepielski and McPeek 2010). To illustrate the problem, we create a very simple model of two 

competing species. Say our hypothetical site is occupied by N individuals. In the beginning of our 

simulation, half of these individuals belong to one species (    ) while the other half belongs to the 

other (    ). We assume that these species have the same mortality rate and that, once an individual 

dies, its patch is occupied by a new individual of species 1 with probability 
    

 
 and by species 2 

otherwise. Since the simulation starts with the same number of individuals for each species and these 

species have identical demographic rates, one could expect that coexistence is guaranteed. Simulation 

results using the pseudo-code below can, however, quickly debunk this naïve expectation.  

Pseudo-code 
 

1) Set the initial number of individuals (N, N1,1, and N1,2) and mortality rate. 
2) For each year: 

A – determine the number of individuals that die from each species  
B – determine which species will occupy each of these vacant areas 

 



While deterministic simulations would indeed indicate coexistence, our simulation results show 

that adding stochasticity fundamentally changes the predicted outcomes, indicating that coexistence is 

relatively rare (Panel B in Fig. 3). These simulations allow students to quickly assess the importance of 

several model parameters to ensure coexistence. For example, students can evaluate how simulation 

outcomes change as the overall number of individuals changes (which illustrates that extinction happens 

faster as habitat size decreases). These simulations also challenge students to think of which types of 

processes could be in place to increase the probability of coexistence (e.g., rare species advantage, 

where mortality rate decreases as the density of conspecific individuals decreases; or spatial aggregation 

of species, where patch occupancy probability depends on the species of neighboring individuals). 

 

Fig. 3. Coexistence is rare even if species have the same demographic rates and initial population size. 

Panel A shows the result of one simulation. Panel B displays the summary results from 500 simulations, 

revealing the proportion of simulations in which species one dominated and species two went extinct 

(red), species two dominated and species one went extinct (blue), or none went extinct (green). Our 

simulations started with N=10,000, mortality rate of 0.2, and simulation length of 50,000 years. 

 

Optimization 

A conservation organization is interested in increasing the population of a particular endangered 

species to 100 individuals 20 years from now. Because resources are scarce, these resources will be 

considered wasted if the management action fails but also if this action results in a much larger overall 

population than originally targeted. Therefore, a researcher might ask by how much should one (or 

more) demographic parameter be increased to achieve the desired population size in year 20. This 

question can be recast into an optimization problem, where we want to find the parameter value that 

minimizes the distance between our target and the simulated population size. Here we assume that this 



is a stage-structured population, currently comprised of 11 pups, 9 juveniles, and 30 adults, and that the 

transition matrix A was estimated to be: 

   

   
     

     

   
       

         
           

  

where              and   are the probabilities of pups becoming juveniles, juveniles remaining 

juveniles, juveniles becoming adults, adults remaining adults, and the per capita fecundity rate, 

respectively. Parameter values were taken from Wielgus et al. (2008), corresponding to the sea lion 

population at the Granito island. We choose to optimize just the fecundity parameter. We use the 

following pseudo-code: 

Pseudo-code 
 

1) Forward simulation part:  
Create a function to predict future population size, based on the set of demographic parameters 
provided by the user. This function will: 

A - Create the transition matrix A using the provided demographic parameters. 

B - Set the vector with the initial number of individuals at each stage to    
  
 
  

  

C - For year 1 to year 20, update N by calculating      
D - Sum the number of individuals over all stages and output results to user 

 
2) Optimization part:  

Use an optimizer to determine the fecundity rate that would make the projected population size in year 
20 as close as possible to 100 

 

Our results indicate that the fecundity rate would have to increase from 0.53 to 0.96 to ensure that this 

population will have 100 individuals 20 years from now.  

Statistics 

We illustrate computer intensive methods in statistics by analyzing spatial patterns of tropical trees. 

These spatial patterns can provide indirect information on dispersal and mortality of these tree species, 

yielding insights regarding the mechanisms that shape community structure and that allow so many 

species to coexist. Several metrics have been used to determine if these trees are more clumped or 

dispersed than expected (Condit et al. 2000, Seidler and Plotkin 2006, Terborgh et al. 2008), partly 

because this analysis does not fit nicely into standard statistical tests with their corresponding normal 

assumptions. Here we develop yet another metric to determine how clumped each species is. Our 

approach is to calculate the mean nearest conspecific neighbor distance (NCND) for the saplings of each 

species. Then, we estimate the p-value of this statistic by generating the NCND distribution under the 

null hypothesis that these saplings are randomly distributed, akin to a randomization test. This can be 

done using the following pseudo-code: 



Pseudo-code 
 

1) For each species i, calculate: 
A – the number of saplings from that species and the mean nearest conspecific neighbor 

distance. Denote these    and      
   , respectively. 

B – randomly distribute Ni saplings across the plot and calculate      
   .  

C – Repeat B 1000 times and estimate the p-value as        
         

     
        

         
    

    
  

 

Using data from four plots located in the Peruvian Amazon, two faunally intact and two hunted, 

our results suggest that saplings from most tree species tend to have a clumped spatial distribution 

(Panel A in Fig. 4). However, when we disaggregate by the faunal status of each plot, our results indicate 

that there tends to be more species classified as dispersed or very dispersed in faunally intact sites, 

whereas hunted sites tend to have more species classified as clustered (Panel B in Fig. 4). These results 

might be attributed to the presence of large bodied seed dispersers in these faunally intact sites.  

 

 

Fig. 4. Tree species are spatially clustered but hunted sites have more clustering than faunally intact 

sites. Panel A shows the relationship between mean nearest conspecific neighbor distance (NCND) and 

the number of saplings within the plot on a log-scale. Red lines (solid and dashed lines are mean and 

95% confidence intervals, respectively) indicate the expected pattern if saplings were distributed at 

random, superimposed on the data (each point represents a species within a particular site). Panel B 

shows a kernel density estimate of the p-value (estimated from randomization tests) distribution for two 

hunted (red) and two faunally intact (blue) plots.  

 



We note that the implementation of this randomization test illustrates the meaning of p-values 

in a more transparent and intuitive manner than using a GUI driven interface from a statistical package, 

enabling a more profound comprehension of statistics by the student. 
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Appendix 2. Description of the surveys 

We performed two surveys, examining 1) course offerings from environmental science 

programs in the United States, and 2) trends in post-doctoral advertisements that mention computer 

programming.  

We studied the 20 top environmental science programs in the United States, as ranked by the 

US News and World Report (2011, http://www.usnews.com/education/worlds-best-universities-

rankings/best-universities-environmental-sciences). We searched the most recent course catalogs and 

bulletins of these programs for course descriptions that mentioned 'programming' or 'computation' and 

excluded courses that listed those as prerequisite skills, limiting our results to courses that teach 

computer programming to environmental scientists. This survey could potentially miss occasional course 

offerings, but demonstrates programmatic investment in computer programming education. 

We also surveyed trends in post-doctoral advertisements posted to the ECOLOG email list 

between January 1, 2000 and March 20, 2012 (http://listserv.umd.edu/archives/ecolog-l.html). We 

identified emails that contained "postdoc” or “post-doc” or “post doc" in the subject and then subsetted 

the ones that contained "programming” or “computation” or “matlab” or “C++” or “Python” or “Visual 

Basic" in the message text. We removed duplicates and replies (i.e., containing "Re: " in the subject), 

resulting in 2606 total post-doc advertisements. Then, we summarized the results by year for analysis. 

  

http://www.usnews.com/education/worlds-best-universities-rankings/best-universities-environmental-sciences
http://www.usnews.com/education/worlds-best-universities-rankings/best-universities-environmental-sciences
http://listserv.umd.edu/archives/ecolog-l.html


Appendix 3. Course structure 
 

As mentioned in the main text, we target a wide range of data management and environmental 
science problems that are familiar to most of our students and that can be tackled with simple 
algorithms. As a result, we avoid simply listing the commands and explaining what they do. Rather, we 
focus on how to accomplish different real-world tasks. Our course uses R mainly because it is free; as a 
result, students do not need to worry about paying exorbitant license fees if they do not stay in 
academia. Furthermore, R is a highly versatile tool, with extensive documentation available online, and 
supported by a large community of users.  
 

We divide our course into three main sections of approximately the same length. The first 
section covers exploratory data analysis / data visualization, reproducible research and effective data 
management, introducing the basic commands and syntax along the way. The second section introduces 
loops as the key to harness the power of computer. Finally, the final section brings all these concepts 
together by applying them to several real-world applications. 
 

Data forms the basis of our course. Thus, our first section starts by describing how to import and 
export data and how to view data. We then lay-out the bread-and-butter tools for exploratory data 
analysis. We show how 2-D graphics (e.g., scatter plots, box-plots, histograms, bar-plots, pie-charts) can 
be easily created and used to identify outliers or extreme values that are used as missing data code. We 
also introduce Boolean logic to allow students to subset and query data in multiple ways. We emphasize 
the importance of consistency checks. For instance, one may receive data on the different land cover 
areas within a buffer of radius r around multiple cities. In this case, one can easily sum the area of each 
land use type to see if this sum equals the expected buffer size    . Similarly, one can check for trees 
that have shrunk or people that are yet to be born. Fancier data visualizations are introduced at the end 
of the first section, including locally weighted polynomial regression (LOWESS), smoothed histograms, 
conditional plots, the usage of color and symbols to add a third dimension in 2-D plots (e.g., heat map, 
colored scatter-plots or colored box-plots), and finally 3-D graphs (e.g., surface plots and 3-D scatter 
plots). 
 

Throughout this first session, we reiterate the advantages of using scripted analysis programs 
regarding data management and reproducible science. For instance, by keeping only the initial raw and 
the final edited dataset, one avoids the proliferation of spreadsheets that occurs even for well organized 
researchers. Furthermore, all judgment calls regarding deleted or imputed data points, as well as plain 
mistakes, are automatically recorded within the script.  
 

The second session focuses predominantly on loops. In our experience, recursive structures, 
such as loops, are the major stumbling block for students, particularly for those with no or little 
programming experience. Thus, we spend considerable time building familiarity with loops and flow 
commands (e.g., if conditions). We often start by writing multiple lines of code to illustrate how a 
particular repetitive task would be solved in the absence of loops. We then draw the student’s attention 
to the patterns that emerge from these multiple lines of code, which form the basis for creating a 
succinct loop. We employ abstract examples (e.g., create a series of even numbers, Fibonacci numbers, 
prime numbers, calculate 10 factorial) and applied examples (e.g., importing multiple data files that 
have similar names - ‘rain1.txt’, ‘rain2.txt’, ‘rain3.txt’; creating multiple histograms of variables in the 
dataset; projecting future population size) to fix ideas. There is often considerable heterogeneity among 
students regarding how fast they pick up these concepts, which may be fruitfully exploited by pairing 
individuals with different skills. At the end of this session, we show how one can create customized 



functions, which allows for a more compartimentalized code and is the gateway for optimization 
procedures.  
 

The third session aims at bringing all these concepts together. We target vastly different 
problems that nevertheless rely on the same building blocks introduced in earlier sessions, such as loops 
and Boolean logic. These examples involve data management, building complex figures, optimization, 
computer intensive statistical methods, and forward simulations (e.g., Appendix 1). During this session, 
we emphasize that these tasks are not mutually exclusive. For instance, an optimization problem may 
require forward simulations (e.g., optimal timber harvesting) while a computer intensive statistical 
methods may rely on optimization (e.g., bootstrap). Our goal here is to show how the standard toolbox 
of environmental scientists can be dramatically expanded by creatively combining these different tools 
to solve real-world problems. 
  

Overall, our teaching strategy is to stimulate students to create algorithms that work, rather 
than focusing on improving algorithm efficiency or elegant code. For example, we focus predominantly 
on loops, even if the problem can be easily vectorized. Our students learn programming skills by 
practicing, mainly through weekly programming tasks. While other quantitative courses typically provide 
code that need to be slightly tweaked to answer the assignments, we prefer not to provide this baseline 
code. In fact, we believe that long lasting programming skills can only be acquired if one learns how to 
piece together the different commands that have been taught and how to troubleshoot their algorithm. 
In these weekly tasks, we try to show how the concepts in class can be used in several different 
contexts, as well as combined with each other. For example, while in class we worked on optimization as 
a tool for fitting a nonlinear curve to data, the weekly homework could include an example of optimizing 
returns on timber yield, which combines a forward simulator and an optimizer to determine the optimal 
harvest rate. We then provide our own solution code for these weekly tasks. By doing so, we hope to 
illustrate how different approaches exist to solve the same problem, and to foster good coding practices 
(e.g., using indentation and comments, avoiding hardwired numbers, creating compartmentalized code, 
etc.). 
 

Throughout the course, we also avoid explaining each command in detail, rather exhorting 
students to seek information on the web. We find this to be important to ensure that, by the end of the 
course, the students are fully independent of the instructor, being capable of searching for information 
and understanding how a command not covered in class works.  
 


