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Abstract. Simulation models are increasingly used to gain insights regarding the long-
term effect of both direct and indirect anthropogenic impacts on natural resources and to
devise and evaluate policies that aim to minimize these effects. If the uncertainty from
simulation model projections is not adequately quantified and reported, modeling results
might be misleading, with potentially serious implications. A method is described, based on a
nested simulation design associated with multimodel projections, that allows the partitioning
of the overall uncertainty in model projections into a number of different sources of
uncertainty: model stochasticity, starting conditions, parameter uncertainty, and uncertainty
that originates from the use of key model assumptions. These sources of uncertainty are likely
to be present in most simulation models. Using the forest dynamics model SYMFOR as a case
study, it is shown that the uncertainty originated from the use of alternate modeling
assumptions, a source of uncertainty seldom reported, can be the greatest source of
uncertainty, accounting for 66–97% of the overall variance of the mean after 100 years of
stand dynamics simulation. This implicitly reveals the great importance of these multimodel
projections even when multiple models from independent research groups are not available.
Finally, it is suggested that a weighted multimodel average (in which the weights are estimated
from the data) might be substantially more precise than a simple multimodel average
(equivalent to equal weights for all models) as models that strongly conflict with the data are
given greatly reduced or even zero weights. The method of partitioning modeling uncertainty
is likely to be useful for other simulation models, allowing for a better estimate of the
uncertainty of model projections and allowing researchers to identify which data need to be
collected to reduce this uncertainty.

Key words: model uncertainty; modeling assumptions; multimodel; partitioning of the variance;
simulation model.

INTRODUCTION

Sustainable use of natural resources and the balance

between satisfying human needs and maintaining other

ecosystem functions will require quantitative knowledge

about the ecosystem’s present and future responses (Clark

et al. 2001, DeFries et al. 2004). Numerous models have

been created to predict ecosystem responses to direct and

indirect anthropogenic influence, but if the uncertainty

associated with these model projections is not reported

adequately, confidence of projections cannot be assessed.

At one extreme, thismay result in overconfident decisions,

while at the other, decisionmakers may use it as an excuse

to postpone or avoid making necessary decisions.

The field of statistics has traditionally acknowledged

parametric uncertainty once a particular model form has

been chosen. The exclusion of model structure and

model selection uncertainty has been shown, however, to

result in overly optimistic predictive or inferential un-

certainty, which can have serious implications (Draper

1995, Hoeting et al. 1999). The problem of ignoring

model structure uncertainty is likely to be exacerbated in

situations in which model extrapolations from available

data are needed for decision making, as models that are

very different mathematically can have similar fits to the

data but wildly different predictions outside the data

range (Chatfield 1995, Draper 1995). Multimodel in-

ference has been suggested as a robust method that cir-

cumvents the problem of overly optimistic predictive or

inferential uncertainty through improved representation

of model structure uncertainty (Burnham and Anderson

1998, Wintle et al. 2003, Ellison 2004, Link and Barker

2006).

As in the field of statistics, probably the most-studied

source of uncertainty in simulation modeling in the

ecological literature is parameter estimate uncertainty.

Parameter uncertainty has been assessed in population

viability analysis (e.g., Ellner and Fieberg 2003), as well

as in models of forest (e.g., Pacala et al. 1996), climate
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(e.g., Wigley and Raper 2001, Murphy et al. 2004,

Stainforth et al. 2005), and disease (e.g., Elderd et al.
2006). Other sources of uncertainty that are commonly

reported in simulation models include model stochas-
ticity (e.g., Gourlet-Fleury et al. 2005, Degen et al. 2006)

and effect of starting conditions (e.g., simulations
initialized with different forest plots; Phillips et al.
2004, van Gardingen et al. 2006). Model stochasticity is

defined here as the changes in model projections,
simulated with a fixed model structure and fixed

parameter values, solely due to the stochastic nature of
the simulated processes (e.g., mortality and recruit-

ment). Model structure uncertainty, on the other hand,
is defined here as the changes in model projections due

to changes in the structure of the model (e.g., changes in
the form of the underlying equations). Because of the

large number of general circulation and terrestrial
biogeochemistry models built by independent research

groups, multimodel projections have been increasingly
used for regional and global climate and vegetation

predictions. This has allowed for the assessment of the
robustness of these predictions in relation to the choice

of the model (Cramer et al. 1999, Cox et al. 2008, Malhi
et al. 2008). The evaluation of model structure un-
certainty for other types of simulation models such as

those used for management of natural resources,
however, is still uncommon (but see Pascual et al.

1997, Carpenter 2002, Bradshaw et al. 2006).
The objective of this study is to show that, even if

multiple models built by independent research groups
are not available, multimodel inference is still a valuable

tool to assess the uncertainty that originates from the
use of key assumptions adopted in the process of model

building. In particular, multimodel projections are used
to show how the uncertainty resulting from these

assumptions can be larger than the uncertainty that
arises from other more commonly assessed sources, such

as parameter uncertainty, model stochasticity, and effect
of starting conditions. To achieve this objective, the

method used to partition the overall uncertainty into
these different sources is described and a comparison of

the uncertainty originating from these sources is made
using the forest dynamics model SYMFOR as a case
study. Finally, the broader implications of the results

from this case study are discussed and general recom-
mendations for ecological modelers are provided.

METHODS

The data set

The series of plots at the Tapajós National Forest,
Para, Brazil, are clustered in two regions known as km

67 and km 114. The series of plots at km 114 are
composed of 60 permanent sample plots (PSPs), each of

0.25 ha, initially measured (all trees with diameter at
breast height [dbh] �5 cm) in 1981 in an unlogged
primary forest. Twelve of these plots were left unlogged

while a silvicultural experiment with a randomized block
design was installed in the remaining 48 plots. In this

silvicultural experiment, all plots were selectively logged

in 1982 and different thinning intensity treatments were

applied in 1995. The series of plots at km 67 are

composed of 36 PSPs, each of 0.25 ha. This region was
selectively logged in 1979, two years prior to the in-

stallation of the permanent plots (in 1981). Detailed

description of the forest and these experiments can be

found elsewhere (Silva et al. 1995, 1996, Alder and Silva
2000, Phillips et al. 2004, Oliveira 2005). This data set

was used to calibrate and to initialize SYMFOR

(Phillips et al. 2004).

The model and its variants

SYMFOR is a modeling framework for mixed

tropical forest that combines a management model with

an empirical spatially explicit individual-tree-based

ecological model. The management model allows users

to specify silvicultural activities, such as harvest, thin-
ning, poisoning, and enrichment planting; the ecological

model simulates the natural processes of recruitment,

growth, and mortality. SYMFOR has been extensively

used for tropical forest management issues in Indonesia
(Phillips et al. 2002, 2003, van Gardingen et al. 2003),

Brazil (Phillips et al. 2004, van Gardingen et al. 2006,

Valle et al. 2007), and Guyana (vanUlft 2004, Arets

2005).

A brief summary of the model, which is described in

greater detail elsewhere (Phillips et al. 2004), follows.
First, because of the high diversity of tree species present

in the data set (see Plate 1), species were assigned to one

of 10 ecological species groups using a three-stage

method. Cluster analysis, discriminant analysis, and

subjective assignments were performed using variables
describing growth rates at different competition levels

and maximum tree size. Then, growth, recruitment, and

mortality functions were calibrated for each species

group. The growth submodel predicts annual diameter
growth, I (in centimeters per year), as a function of tree

diameter at breast height, D (in centimeters), and a

diameter-independent competition index, C, with the

equation I ¼ D(a0 þ a1e
�a2D) þ a3C þ a4. Annual

recruitment probability, F, is predicted for each 10 3 10
m subplot as a function of the growth, I, of a

hypothetical tree with 5 cm diameter centered in the

middle of the subplot, with the equation F¼ r1e
�r2I þ r3I

þ r4. Finally, the annual mortality probability, M (as a

percentage), is given by the following equation:

M ¼ m0 if D , bd þ 5

m1 if bd þ 5 � D

�

where bd is the upper limit of the first diameter class (in

centimeters). This last equation describes how trees in the

first diameter class (D , bdþ 5) are predicted to have a
different mortality rate than those in the other size classes

(bdþ5�D). Estimates of the parameters a0, a1, a2, a3, a4,

r1, r2, r3, r4, m0, and m1 for different model variants are

given in Appendix A. A flow diagram of SYMFOR with

the main simulated processes is provided in Fig. 1.
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All results presented in this paper are assessed using
SYMFOR’s overall basal area (all trees with dbh �5 cm)
projections. Basal area was of primary interest because it

is a well-accepted biological measure that integrates the
ecological processes within a forest. Moreover, it is
highly correlated with variables that are of immediate

interest to forest managers and ecologists, such as forest
volume and biomass. All 95% confidence intervals
reported throughout this article were approximated

using an interval around the mean of 62 SE.

The baseline model.—The baseline model is the model

that was originally parameterized to the Tapajós data set
by P. Phillips (unpublished manuscript). A summary of
the 10 species groups is given in Table 1 and a detailed

description of how these species were grouped, model
structure, and the statistical procedures used to estimate
the baseline model parameters are given in Phillips et al.

(2004). Since the parameters shown in Phillips et al.
(2004) were fine-tuned (i.e., manually adjusted), the

parameter set prior to the fine-tuning process (Appendix
A: Table A1) was used as the baseline model. Two other
model variants were created by adding selected assump-

tions to the baseline model.
Dynamic equilibrium assumption model variant.—The

dynamic equilibrium assumption is a very common
assumption in forest dynamics modeling (Kammesheidt
et al. 2001, Porte and Bartelink 2002) and is generally

interpreted in the context of forest dynamics modeling
as assuming that an undisturbed forest will have a stable

basal area and/or tree density on the species group level
and/or the stand level. The idea of dynamic equilibrium
has a long tradition in fisheries, forestry, and ecology

(Sheil and May 1996, Sutherland 2001, Coomes et al.
2003, Kohyama et al. 2003, Brown et al. 2004, Malhi et
al. 2004, Muller-Landau et al. 2006, Palace et al. 2008).

The dynamic equilibrium assumption is frequently
implemented by fine-tuning the forest dynamics model,

regardless of whether the model is empirical or
mechanistic (Gertner et al. 1995). We implemented this
assumption by iteratively adjusting the parameters from

the baseline mortality and recruitment submodels.
Parameters were adjusted within their 95% CIs so that

species group composition over a 100-year simulation in
undisturbed forest was relatively constant. The prag-
matic justification for this procedure is that recruitment

and mortality data are notoriously noisy; therefore,
empirical parameters are likely to be poorly estimated

and need to be adjusted. The modified parameters
resulting from this fine-tuning procedure are shown in
Appendix A: Table A2. The effect of fine-tuning the

model is shown in Fig. 2, in which the equilibrium model

FIG. 1. Flow diagram of the SYMFOR model, illustrating
the main processes simulated, where D, C, and I are diameter
(cm), a diameter-independent competition index, and diameter
increment (cm/yr), respectively.

TABLE 1. Summary description of each species group in the study plots in the Tapajós National Forest, Para, Brazil.

Species
group

Group name
(reference)

95th
percentile

(cm) I (cm/yr) Dominant members

1 slow-growing mid-canopy 41.8 0.21 Sapotaceae, Lauraceae, Guatteria poeppigiana
2 slow-growing understory 15.9 0.09 Rinorea flavescens, Duguetia echinophora, Talisia longifolia
3 medium-growing mid-canopy 57.2 0.29 Geissospermum sericeum, Carapa guianensis, Pouteria spp.
4 slow-growing lower canopy 27.7 0.18 Protium apiculatum, Rinorea guianensis, Neea spp.
5 medium-growing upper canopy 72.5 0.26 Couratari oblongifolia, Minquartia guianensis
6 fast-growing upper canopy 76 0.54 Sclerolobium chrysophyllum, Trattinickia rhoifolia,

Didymopanax morototoni
7 fast-growing pioneers 35.8 0.54 Inga spp., Sloanea froesii, Bixa arborea, Jacaranda copaia
8 emergents, climax 104 0.37 Manilkara huberi, Goupia glabra, Hymenaea courbaril,

Dipteryx odorata
9 very-fast-growing pioneers 38.7 1.26 Cecropia sciadophylla, Jaracatia leucoma, Jaracatia spinosa
10 very-fast-growing upper canopy 78.2 0.94 Tachigalia myrmecophylla, Sclerolobium tinctorium

Notes: The information provided here is reproduced with permission from Phillips et al. (2004). The 95th percentile is that of the
cumulative diameter frequency distribution, and I is the annual mean growth rate.
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is contrasted to the baseline model in relation to the

projected species composition of the unlogged forest

over a 100-year period.

Growth extrapolation assumption (growthextrap) model

variant.—A multi-component iterative model such as

SYMFOR can easily start extrapolating outside the

range of the calibration data set without an obvious

indication to the user that this extrapolation is

occurring. This can occur either in relation to individual

tree characteristics (e.g., size, growth rate, competition

intensity) or stand-level characteristics (e.g., basal area,

species composition, tree density). Trees that grow in

diameter beyond the range of sizes contained in the

original data set are one of the most obvious model

extrapolations, and assumptions regarding the dynamics

of these trees are often needed. Other extrapolations are

far more subtle and frequently go unrecognized. The

growth submodel, for instance, might predict diameter

increment for covariate combinations that extrapolate

the data set used to calibrate it. Preliminary simulations

with the baseline model indicated that extrapolation

from the growth submodel was required for ;4% of all

trees by the end of 100-year simulations for both logged
and unlogged scenarios.

The growthextrap model is exactly the same as the
baseline model, except for a modification of the growth

submodel. The baseline growth submodel implicitly
assumes that the diameter increment is correctly

estimated even if used for covariate combinations that
extrapolate the calibration data set. The growth
submodel in the growthextrap model was modified so

that the best point estimate (the species group mean
diameter increment) was used whenever the combination

of covariates (diameter and competition index) extrap-
olated outside the data range.

The analysis was limited to these two assumptions
(i.e., dynamic equilibrium and growth extrapolation

assumptions) in order to keep simulations, results, and
discussions concise. However, it is acknowledged that
there are numerous other assumptions in forest dynamic

models. While the results do not refer to all possible
modeling assumptions, they nevertheless help to illus-

trate how the method can be used and the magnitude of
the uncertainty that may arise as a result of the use of a

few alternate assumptions.

FIG. 2. Comparison of the projected species composition for the unlogged forest simulations using the (A) baseline and (B)
dynamic equilibrium assumption models over a 100-year period. Each line represents one of the 10 species groups simulated by
SYMFOR. This figure illustrates how the (A) baseline model (which does not exhibit a dynamic equilibrium) can have its
parameters fine-tuned to exhibit (B) dynamic equilibrium. Data used to initialize and calibrate the model are from the Tapajós
National Forest, Para, Brazil.
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Design of simulations

Stand dynamics were simulated for two extreme

scenarios: (1) an undisturbed forest and (2) a heavily

logged forest, where simulated logging extracted all trees

�45 cm dbh from commercial species resulting in a

mean logging intensity of 75 6 6 m3/ha (mean 6 95%

CI; see Plate 1). Logging was simulated in the beginning

of the run and was exactly the same for all simulations in

order to ensure an identical starting point for all

subsequent stand projections. Both of these scenarios

are commonly simulated; the first scenario serves to

assess whether the model behaves as expected in

undisturbed forest, while the second provides an

assessment of the recovery of the forest (particularly in

relation to timber stocks and forest biomass) after a

major disturbance (e.g., logging). These two extremes

were chosen to evaluate how sensitive the results were to

the scenarios being simulated and to determine whether

the effect of a given assumption changed according to

the scenario being simulated.

One set of simulations was generated for each model

variant, each set consisting of 20 100-year simulations

for each plot and scenario (undisturbed and heavily

logged forest; Fig. 3A). This nested experimental design

allowed us to disentangle uncertainty resulting from

model stochasticity and from starting conditions. The

uncertainty resulting from different starting conditions

refers, in this case study, to the variation in mean model

projections initialized with different forest plots. There-

fore, throughout the text, the terms ‘‘uncertainty (or

variance) associated with starting conditions’’ and

‘‘uncertainty (or variance) associated with plots’’ are

used interchangeably.

FIG. 3. Nested designs used for simulations. (A) Nested design used to determine the variances associated with starting
conditions effect and model stochasticity. This design was used for the three model variants evaluated. (B) Nested design used to
determine the variance associated with parameter uncertainty. Only the baseline model variant was used for these simulations. The
abbreviations R and PS stand for repetitions and parameter sets, respectively.
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One extra set of simulations was run solely to

determine uncertainty associated with parameter esti-

mation, consisting of 500 100-year simulations for each

plot and scenario. Parameters of the growth, recruit-

ment, and mortality submodels were drawn randomly

every two repetitions and were kept constant throughout

the run, resulting in a nested experimental design

(individual runs nested within parameter sets nested

within plots; Fig. 3B). This allowed us to separate the

uncertainty associated with parameter estimation from

the uncertainty resulting from model stochasticity and

from starting conditions.

Data analysis

Let L ¼ fS1, . . . , Smg be a finite set of model

alternatives, x be the data, and y be the response

variable. Furthermore, let li and r2
i be the expected

value and the variance, respectively, of the response

variable given the data and the ith model alternative

(i.e., li ¼ E( y j x, Si ) and r2
i ¼ Var( y j x, Si )). Let the

probability of the ith model given the data be pi (i.e., pi¼
P(Si j x)). Draper (1995) showed that

Varðy j x; LÞ ¼
Xm

i¼1

pir
2
i þ

Xm

i¼1

piðli � lÞ2

where

l ¼ Eðy j x; LÞ ¼
Xm

i¼1

pili:

In other words, the variance of the response variable is

the sum of the within-model variance and the between-

model variance, both weighted by the probability of

each model given the data.

Following similar arguments, it can be shown that

Varð ȳ j x; LÞ ¼
Xm

i¼1

pir
2
ȳ;i þ

Xm

i¼1

piðli � lÞ2

where r2
ȳ;i is the variance of the mean of the ith model

alternative. This equation can be further expanded by

decomposing r2
ȳ;i into the variances of the mean

associated with different uncertainty sources, such as

the variance of the mean associated with model stochas-

ticity, with starting conditions, and with parameter

uncertainty (r2
ȳ;ms;i, r2

ȳ;p;i, and r2
ȳ;pu;i, respectively). If

model variants are created by adding or removing

assumptions from a single model, the uncertainty that

arises from the use of alternatemodeling assumptions can

be defined as the variance between these model variants,

given by

Xm

i¼1

piðli � lÞ2:

Therefore, the key equation that allows the partitioning of

the overall variance of the mean into different sources of

uncertainty is given by

Varð ȳ j x; LÞ ¼
Xm

i¼1

pi r2
ȳ;ms;i þ r2

ȳ;p;i þ r2
ȳ;pu;i

� �

þ
Xm

i¼1

piðli � lÞ2: ð1Þ

To illustrate, we could estimate some variable of

interest ȳ with three independent climate models. If ȳ
was mean annual temperature (8C), for example, li and

r2
ȳ;i would be the expected annual temperature and the

variance of the mean annual temperature, respectively,

as predicted by model i. Assume we populate the vector

li and r2
ȳ;i with model estimates so that we have li¼ [25,

22, 28] and r2
ȳ;i ¼ r2

ȳ;ms;i þ r2
ȳ;p;i þ r2

ȳ;pu;i ¼ [0.2, 0.2, 0.1]þ
[0.4, 0.2, 0.1]þ [0.4, 0.1, 0.1]¼ [1, 0.5, 0.3], where vectors

are ordered from model 1 to model 3. Suppose the

probability of each model given the data was estimated

to be pi ¼ [0.2, 0.1, 0.7]. This implies that

l ¼
Xm

i¼1

pili ¼ ½0:2; 0:1; 0:7�
25

22

28

2
4

3
5 ¼ 26:8:

The variance of the mean annual temperature, taking

into account all three climate models, would therefore be

equal to

Varð ȳ j x; LÞ ¼½0:2; 0:1; 0:7�
1

0:5

0:3

2
64

3
75

þ ð½25; 22; 28� � ½26:8; 26:8; 26:8�Þ

3

0:2 0 0

0 0:1 0

0 0 0:7

2
64

3
75

25

22

28

2
64

3
75�

26:8

26:8

26:8

2
64

3
75

0
B@

1
CA

¼ 4:42:

A similar calculation could also be performed if the

modeler was interested in temporal variability (e.g., the

variable of interest ȳ could then be the within-year

temperature range).

The elements of the within-model variance of the

mean (r2
ȳ;ms;i, r2

ȳ;p;i, and r2
ȳ;pu;i) in Eq. 1 can be estimated

in several ways. In this paper, we chose to estimate

r2
y;ms;i, r2

y;p;i, and r2
y;pu;i by running the simulations

following a balanced nested experimental design and

using a variance component analysis assuming normal

residuals. These variances were then converted to r2
ȳ;ms;i,

r2
ȳ;p;i, and r2

ȳ;pu;i, respectively, by dividing by the

appropriate number of observations. The variances

associated with starting conditions and with model

stochasticity (r2
y;p;i and r2

y;ms;i, respectively) were deter-

mined using the expected means squares from an

ANOVA with one random effect (Table 2) estimated

at every 10-year time step. Using the simulation set in

which parameters were allowed to vary, the uncertainty

associated with parameter estimation (r2
y;pu;i) was

determined using the variance components analysis

summarized in Table 3, also estimated separately for
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every 10-year time step. The variance associated with

parameter uncertainty was the only result used from this

set of simulations. Because of the computational cost

necessary to determine r2
y;pu;i for all models and since we

were interested in the magnitude and not the exact value

of this parameter, r2
y;pu;i was determined only for the

baselinemodel and assumed to be the same for all models.

The probability of each model given the data (pi ) can

be estimated using Bayes rule. For instance, if there are

two independent data sets (e.g., Dmort and Drcrt, the

mortality and recruitment data sets, respectively), the

probability of model 1 given these two independent data

sets would be

pðM1 jDmort; DrcrtÞ

¼ LðDmort jM1Þ3 LðDrcrt jM1Þ3 pðM1ÞXm

i¼1

LðDmort jMiÞ3 LðDrcrt jMiÞ3 pðMiÞ

where L is the likelihood, and p(Mi ) and p(Mi jDmort,

Drcrt) are the prior and posterior probabilities, respec-

tively, of model Mi. Equal priors were assigned to each

model (i.e., p(Mi ) ¼ 1/3). The likelihood of each data

set given each model i, L(Dmort jMi ), and L(Drcrt jMi ),

was determined for each data set using SYMFOR’s

equations and inserting random effects to circumvent

the lack of independence of individual observations (as

described in Appendix B).

RESULTS

The results were in general consistent for the unlogged

and the logged scenarios. The 95% CIs describing the

uncertainty around the average projection from each

model variant tended to remain relatively constant and

small (Fig. 4A, B), and the variance of the mean was

mainly dominated by the effect of starting conditions

(Fig. 5A, B). A comparison of the projections from the

individual model variants, however, revealed that they

tended to diverge with increasing simulation length (Fig.

4A, B) and, as a consequence, after 100 years of

simulation, most 95% CIs did not overlap. These results

highlight the fact that, by neglecting simulation results

that could have originated had a different set of

assumptions been chosen, users of model projections

based on a single model variant tend to underestimate

the uncertainty associated with these projections. For

instance, users of the equilibrium model variant would

have predicted that basal area would recover to pre-

logging levels 50–70 years after logging, ignoring that, in

the absence of the dynamic equilibrium assumption, the

model (i.e., the baseline model variant) would predict

complete recovery of the basal area after 20–30 years.

Similarly, equilibrium model users would have predicted

an increase of the original basal after 100 years in the

unlogged scenario of 14–20% while the model without

this assumption (i.e., the baseline model variant) would

predict an increase of 26–32%.

As is often done in climate models, the overall trend

was initially described using a simple multimodel

average (i.e., equal weights are assigned to each model).

As simulation length increased, the width of the 95% CI

around the simple multimodel mean increased, reflecting

TABLE 2. ANOVA used to determine the variances associated
with plots and model stochasticity (r2

y;p;i and r2
y;ms;i,

respectively).

Source of
variation df Expected MS

Plot np � 1 r2
y;ms;i þ nrpsr2

y;p;i

Error np 3 (nrps � 1) r2
y;ms;i

Total np 3 nrps � 1

Notes: These variances were estimated separately for each
model variant (i.e., baseline, dynamic equilibrium assumption,
and growth extrapolation assumption models), logging sce-
nario (logged and unlogged forest), and 10-year time step.
This analysis corresponds to nested design shown in Fig. 3A.
The variances r2

y;ms;i and r2
y;p;i are associated with model

stochasticity and with plots (i.e., with different starting
conditions), respectively, for the ith model; np and nrps are
the number of plots (i.e., 15) and number of repetitions per
plot (i.e., 20), respectively.

TABLE 3. ANOVA used to determine the variance associated with parameter uncertainty
(r2

y;pu;i) for the baseline model variant.

Source of variation df Expected MS

Plot np � 1 r2
y;ms;i þ nrpsr2

y;pu;i þ nrpsnpsr2
y;p;i

Parameter uncertainty np 3 (nps � 1) r2
y;ms;i þ nrpsr2

y;pu;i

Model stochasticity np 3 nps 3 (nrps � 1) r2
y;ms;i

Total np 3 nps 3 nrps � 1

Notes: The variances r2
y;ms;i, r2

y;pu;i, and r2
y;p;i were estimated separately for each logging

scenario (logged and unlogged forest), and 10-year time step. This analysis corresponds to the
nested design shown in Fig. 3B. The variances r2

y;p;i, r2
y;pu;i, and r2

y;ms;i are associated with plots
(i.e., with different starting conditions), with parameter uncertainty, and with model
stochasticity, respectively, for the ith model; np, nrps, and nps are the number of plots (i.e.,
15), the number of repetitions per parameter set (i.e., 2), and the number of randomly drawn
parameter sets per plot (i.e., 250), respectively.
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the divergence of results from the individual model

variants (Fig. 4C, D). The variance of the mean for the

simple multimodel average after 100 years was 21- and

29-fold larger than the average variance of the mean

from the individual model variants (for the unlogged

and logged scenarios, respectively). As shown in Fig.

5C, D, the uncertainty around the mean from the simple

multimodel average was dominated by the uncertainty

that arises from the use of the adopted assumptions.

More specifically, the variance of the mean associated

with the adopted assumptions represented 95% and 97%

of the overall variance of the mean, for the unlogged and

logged simulation results after 100 years, respectively.

These results, however, ignore the fact that some of

the model variants are more consistent with the data

than others. When using the data to estimate model

probabilities, it became clear that the equilibrium model

strongly conflicted with the data (i.e., the posterior

probability associated with this model was approxi-

mately zero) whereas the growthextrap and the baseline

models were equally supported by the data (Table 4).

This was not unexpected since the growthextrap and the

baseline model variants differed only in relation to the

growth submodel and the available growth data did not

distinguish between these two models. As a consequence

of the low weight of the equilibrium model, the variance

of the mean (at year 100) for the weighted multimodel

average (where the weights were estimated from the

data) was ;13–28% of those values when equal prob-

abilities were used (Fig. 5E, F; note narrower 95% CI in

Fig. 4E, F). The practical implication of these results is

that by using the weighted multimodel projections,

forest managers would expect that the forest would

recover its original basal area within 20–30 years after

logging vs. 20–80 years if a simple multimodel average

(i.e., equal weights) had been used. Likewise, the

projected increase in basal area after 100 years for the

unlogged forest with the weighted multimodel average is

equal to 26–36% of the basal area in year 0 vs. 13–40%

with the simple multimodel average. Despite the use of

FIG. 4. Mean model projections (and their associated 95% CIs) showing forest dynamics for an unlogged and a logged forest.
Results from (A, B) the individual model variants (the baseline, dynamic equilibrium assumption, and growth extrapolation
assumption models), (C, D) the simple multimodel average (i.e., equal model probabilities are assigned to each model variant), and
(E, F) the weighted multimodel average (i.e., model probabilities are estimated from the data) are contrasted. The simple
multimodel average (C, D) incorporates the uncertainty associated with the contrasting mean results from the individual model
variants (A, B) but ignores the negligible probability, given the data, associated with the dynamic equilibrium model variant. The
weighted multimodel average (E, F) takes the probability of each model variant into account, which results in a narrower
confidence interval when compared to the simple multimodel average (C, D).
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the data to estimate model probabilities and the

corresponding decrease in overall uncertainty, modeling

assumptions were still the greatest source of uncertainty

(Fig. 5E, F). The variance of the mean associated with

the used assumptions corresponded to 66% and 89% of

the overall variance of the mean, for the unlogged and

logged simulation results after 100 years, respectively.

DISCUSSION

Multimodel projections

Simulation model projections are frequently perceived

by modelers as conditional on the assumptions embed-

ded in the construction of the model (Haefner 1996).

Users of model projections, in contrast, are likely to

overlook this fact. In fact, it is impossible to assess the

uncertainty associated with these assumptions if projec-

tions are based on a single model variant. Multimodel

FIG. 5. Variance of the mean for the overall basal area projections, partitioned between parameter uncertainty, starting
conditions effect, model stochasticity, and assumptions effect. Results are shown separately for logged and unlogged simulations.
Results from (A, B) the individual model variants (variances were averaged over the three model variants), (C, D) the simple
multimodel average (i.e., equal model probabilities are assigned to each model variant), and (E, F) the weighted multimodel
average (i.e., model probabilities are estimated from data) are contrasted. The individual model variants (A, B) exhibit an
excessively small mean overall variance of the mean that does not account for the uncertainties associated with model structure.
Model structure uncertainty, shown as ‘‘Assumptions effect’’ (open bars), is taken into account in the simple multimodel average
(C, D) and the weighted multimodel average (E, F), but the simple multimodel average assumes all models are equally likely while
the weighted multimodel average effectively excludes the equilibrium model variant since this model variant has a negligible
probability given the data.

TABLE 4. Posterior probability of each model variant (i.e.,
baseline, growth extrapolation assumption [growthextrap],
and dynamic equilibrium assumption [equilibrium] models)
given the recruitment data, the mortality data, and both data
sets combined.

Model
variant

Recruitment
data

Mortality
data

Both
data sets
combined

Baseline 0.5 0.33 0.5
Growthextrap 0.5 0.33 0.5
Equilibrium 0.0 0.33 0.0

Notes: The posterior probability was estimated with Bayes’
theorem by combining the prior probability (each model had an
equal prior probability, one-third) and the likelihood (estimated
using WinBUGS; see Appendix B). Recruitment and mortality
data came from logged and unlogged forests (at km 67 and km
114 at the Tapajós National Forest, Para, Brazil).
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projections, on the other hand, are a multiple working

hypothesis (Chamberlin 1965) approach. The case study

illustrated that multimodel projections, even when based

on variants of a single model, can help mitigate this

problem by quantifying and including the uncertainty
that arises from the use of modeling assumptions,

particularly because these assumptions can be the

greatest source of uncertainty (e.g., Fig. 5C–F). The

effect of alternative model assumptions has been eval-

uated elsewhere (e.g., Chambers et al. 2004, Cropper
and Loudermilk 2006), and this effect has been

compared to the uncertainty from other sources using

an approach based on sensitivity analysis (e.g., Knorr

and Heimann 2001, Jung et al. 2007). However, to our
knowledge, the comparison of the magnitude of

uncertainty from different sources has never been done

in a statistically comprehensive way. The case study also

exemplified that multimodel averaged projections can be

substantially different from projections based on a single
model variant (Fig. 4C–F vs. Fig. 4A, B).

Users and modelers may assume that even if

simulations are biased, the comparison of different

scenarios (e.g., logged vs. unlogged forest) or manage-

ment strategies simulated with the same set of assump-

tions would generally be unbiased (e.g., Ellner and
Fieberg 2003, Phillips et al. 2003, Arets 2005). The case

study results, however, show that this is not always true

given that the assumption effect may depend on the

scenario being simulated (e.g., compare baseline and
equilibrium model projections in Fig. 4A vs. 4B).

The use of the best model, as chosen from a model

selection procedure, is equivalent to using a multimodel

projection in which the best model has a probability of

one and all the other alternative models have zero

probability. If all the other alternative models have

indeed zero probability, the use of the best model instead

of multimodel projections is clearly advantageous since

it reduces the number of simulations to be performed. If,

however, some of the other alternative models have a

nonzero probability (e.g., have similar fits to the data),
then the use of the best model might be worrisome as the

best model may have wildly different predictions in

relation to other potential models when extrapolated.

Many ecological models are built for the purpose of

extrapolation (e.g., to predict the future) and, assuming
there is a set of plausible models that have similar fits to

the data, multimodel projections are essential to avoid

underestimating the uncertainty on model predictions.

The use of multimodel inference could have, for

instance, prevented such dramatic events as the disaster
of the U.S. space shuttle Challenger. In this example,

engineers and managers had to predict the probability of

failure of the O-rings for a temperature that was outside

the range for which these rings had been previously

tested. A multimodel inference on the probability of
failure of the O-rings for the low temperature at the time

of launching could have indicated the unacceptably high

risk associated with the space shuttle launching (Draper

1995).

Simple vs. weighted multimodel averaging

The case study suggests that simple multimodel

averaging, as often used with global vegetation and

climate models (Cramer et al. 2001, Koster et al. 2004),

might result in an overestimation of variability (similar
to results in Murphy et al. [2004]). Indeed, multiple

models (or model variants) can be created based on

many biologically reasonable alternatives representing a

given phenomenon. For instance, to avoid trees from

getting too large, a forest modeler might use an equation

PLATE 1. (Left) A mixed tropical forest in the Brazilian Amazon. (Right) Logs of a tropical tree species at a sawmill in the
Brazilian Amazon. The person standing close to the logs is approximately 1.75 m tall. Photo credits: forest, C. L. Staudhammer;
logs, Simone Bauch.
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that predicts zero growth for large trees (e.g., Alder and

Silva 2000, Gourlet-Fleury and Houllier 2000, Kamme-

sheidt et al. 2001, Kohler et al. 2003) or increase the

mortality rate of large trees as a result of senescence

(e.g., Phillips et al. 2003, 2004, Chambers et al. 2004,

Valle et al. 2007). Similarly, the dynamic equilibrium

assumption can be implemented by fine tuning the

model (e.g., Phillips et al. 2004, Gourlet-Fleury et al.

2005, Valle et al. 2007) or by replacing every tree that

dies by a newly recruited tree (e.g., Chambers et al.

2004). To reduce the uncertainty that arises from the use

of assumptions and consequently reduce overall uncer-

tainty around the mean, it is crucial to evaluate which of

these alternative representations are more consistent

with the data and weight them accordingly. Multimodel

projection, in which the individual models are weighted

according to their past performance, has been shown

elsewhere to result in a higher prediction ability than

individual models and simple multimodel averages

(Krishnamurti et al. 1999).

Even if the available data do not help to discern

between these alternative representations, the acknowl-

edgment of this fact can guide researchers to conduct

experiments or collect observational data in order to

strategically reduce model structure uncertainty. In the

case study, despite the fact that model parameters were

carefully fine tuned within the confidence interval of

each parameter, the equilibrium model was shown to be

inconsistent with the data. On the other hand, the data

supported equally well model variants that only differed

in relation to how growth submodel extrapolations were

handled (e.g., baseline and growthextrap models). A

carefully designed experiment might have helped to

further discern between the baseline and the growthex-

trap models.

General applicability of the uncertainty

partitioning methodology

It has been illustrated how a balanced, nested

simulation design facilitates in partitioning the within-

model variance into various sources of uncertainty and

how multimodel projections allow estimation of uncer-

tainty that arises as a result of the use of different model

assumptions (between model variance). This method can

potentially be applied to other types of simulation

models since the sources of uncertainty analyzed here

(i.e., parameter uncertainty, model stochasticity, effect

of starting conditions, and uncertainty associated with

model assumptions) are likely to be jointly present in

other models as well. This method might help model

developers and users to identify which are the greatest

sources of uncertainty and, more importantly, which

type of data should be collected or experiment

conducted to decrease the uncertainty from these

sources. However, depending on the computational

power needed for a single run of some models (e.g.,

global biogeochemical/biosphere models), the numerous

simulations needed for this methodology might limit its

use. One could reduce the number of simulations by

eliminating part of the nested simulation design at the

cost of additional assumptions in the data analysis. For

instance, in the case study described above, parameter

estimation uncertainty could have been assessed for only

one plot and one model and assumed to be the same for

all other plots and models. Also, simulations might

eventually become too numerous when using this

method if too many modeling assumptions are analyzed.

The number of simulations can be somewhat reduced by

discarding those modeling assumptions that are not

supported by the data; however, modelers, and poten-

tially other stakeholders, will ultimately have to decide

which are the key modeling assumptions that should be

included in their uncertainty analysis.

Simulation models have and will increasingly be used

to predict the outcomes of direct or indirect human-

induced changes (e.g., logging, burning, fragmentation,

or carbon accumulation in the atmosphere), sometimes

with millennium-long time windows (e.g., Chambers et

al. 2001). The uncertainty associated with these model

projections is underestimated, however, if the uncertain-

ty resulting from assumptions used in model building is

not taken into account. This has the potential to mislead

decision makers, reduce public confidence in model

projections, hamper the ability to anticipate extreme

events and devise robust policies, and could potentially

have dire consequences (Clark et al. 2001, Pielke and

Conant 2003). Simulation modelers in ecology should

follow the lead of those in the field of statistics, taking

model structure uncertainty into account through multi-

model projections.
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Parameters used for different model variants of SYMFOR (Ecological Archives A019-068-A1).

APPENDIX B

Estimating the likelihood of each data set given each model (Ecological Archives A019-068-A2).
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