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Abstract: It is computationally challenging to fit models to big data. For example, satellite imagery
data often contain billions to trillions of pixels and it is not possible to use a pixel-level analysis to
identify drivers of land-use change and create predictions using all the data. A common strategy to
reduce sample size consists of drawing a random sample but this approach is not ideal when the
outcome of interest is rare in the landscape because it leads to very few pixels with this outcome.
Here we show that a case-control (CC) sampling approach, in which all (or a large fraction of) pixels
with the outcome of interest and a subset of the pixels without this outcome are selected, can yield
much better inference and prediction than random sampling (RS) if the estimated parameters and
probabilities are adjusted with the equations that we provide. More specifically, we show that a CC
approach can yield unbiased inference with much less uncertainty when CC data are analyzed with
logistic regression models and its semiparametric variants (e.g., generalized additive models). We
also show that a random forest model, when fitted to CC data, can generate much better predictions
than when fitted to RS data. We illustrate this improved performance of the CC approach, when used
together with the proposed bias-correction adjustments, with extensive simulations and a case study
in the Amazon region focused on deforestation.
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1. Introduction

Big data have become ubiquitous in multiple domains. However, the analysis of these data is
very challenging because these data are often too large for standard statistical and machine learning
software. Sensors are an important source of big data, including for example measurements of carbon
dioxide concentration in the ocean and coastal seas (e.g., 14.7 million values in the Surface Ocean CO2

Atlas [SOCAT]) [1], digital camera imagery to monitor vegetation phenology (e.g., almost 750 years of
imagery collected typically every 30 minutes by the PhenoCam network) [2], wildlife data from camera
traps (e.g., over 4.5 million records in the Wildlife Insights cloud platform) [3], and satellite imagery
(e.g., over 46 years of the Landsat mission, with currently ~1200 new images being added per day, each
image containing approximately 34 million pixels) [4]. We focus on satellite imagery data (hereafter
remote sensing data) in this article as these data have been extensively used in multiple applications,
such as the mapping and quantification of large-scale changes in tropical forests, urban areas, ice cover,
coral reefs, and surface water [5–9]. Unfortunately, the size of remote sensing data precludes the use of
standard statistical models and predictive algorithms without first aggregating or sampling the data.

Remote Sens. 2020, 12, 1268; doi:10.3390/rs12081268 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-9830-8876
https://orcid.org/0000-0002-9634-6537
http://www.mdpi.com/2072-4292/12/8/1268?type=check_update&version=1
http://dx.doi.org/10.3390/rs12081268
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2020, 12, 1268 2 of 19

In this article, we propose a methodology that improves inference and prediction for binary big data in
which one category is much rarer than the other (highly imbalanced data). We illustrate this approach
by focusing on modeling deforestation risk.

Most studies focused on inferring drivers of deforestation have spatially aggregated the data to
reduce its size. For example, researchers often aggregate data within politically defined units (e.g.,
municipalities or counties) [10–13], aggregate data into super-pixels [14–18], or aggregate data based
on the particular driver being investigated (e.g., by creating distance buffers from the road) [19,20].
Unfortunately, this spatial aggregation unavoidably results in some loss of fine-scale spatial information,
which might be particularly undesirable if researchers are interested in determining the effect of
important distance-based variables (e.g., distance to roads or other infrastructure). Furthermore, when
aggregating data based on the particular deforestation driver of interest (e.g., distance to roads), it can
be challenging to simultaneously remove the effect of other potential confounders such as proximity to
cities, rivers, and markets.

The few studies that have attempted to infer the drivers of deforestation through the modeling
of pixel-level data have had to rely on the random sampling of pixels to reduce sample size [21–23].
Similarly, studies that have focused on predicting future deforestation, rather than on inference on
drivers of deforestation, have also had to rely on randomly sampled data to convert spatial determinants
(e.g., proximity to roads, topography, soil fertility) into deforestation/conversion probabilities [24–26].
The problem of the standard random sampling of pixels in the context of highly imbalanced binary
data is that the resulting dataset might contain very few samples with the category of interest,
resulting in models with decreased inference and prediction ability. Indeed, several studies have
demonstrated the importance of increasing the prevalence of the category of interest (e.g., deforested
pixels) through under-sampling of the dominant class or over-sampling the rare class in highly
imbalanced data [24,27–32]. However, it has also been widely acknowledged that this differential
sampling approach introduces important biases [24], and determining how models can be calibrated
to generate accurate probability estimates is often cited as an important problem [33].

In this article, we derive equations that remove the bias from the estimated parameters and
predicted probabilities when the prevalence of the category of interest is increased through a case-control
(CC) sampling approach, resulting in substantially improved inference and prediction for imbalanced
binary data when compared to simple random sampling (RS). We first describe the CC sampling
methodology and how parameters and predictions need to be adjusted to improve inference and
prediction. Then, we describe how we have tested this methodology using both simulated and real
data. In particular, we illustrate this approach with Generalized Additive Models (GAMs) and random
forest, a commonly used machine learning algorithm, applied to a case study involving deforestation
risk in the Amazon region.

2. Materials and Methods

2.1. Case-Control Sampling

The case-control (CC) approach is widely used in epidemiological studies of rare diseases [34].
In standard cross-sectional or prospective cohort studies, researchers often end up with very few
individuals with the rare disease, a major roadblock to determining potential risk factors. The basic
idea of the CC approach is to retrospectively sample observations according to their outcome. A CC
approach in epidemiological studies typically selects all individuals with the rare disease (i.e., cases)
and a sample of individuals without the disease (i.e., controls), thereby circumventing the issue of not
having enough individuals with the rare disease. Data that arise from a CC approach will typically
yield much better estimates than a random sample as a result of the increased number of cases because
the CC approach “concentrates resources where there is the greatest amount of information, namely on
the cases” [34].
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2.1.1. Inference from Case-Control Data

The idea that a CC sampling approach results in better inference can be formalized following King
and Zeng [35]. In a standard logistic regression, the variance of the regression parameters is given by

Cov
(
β̂
)
=

(
XTŴX

)−1
(1)

where β̂ is the vector with the estimated regression coefficients, X is the design matrix containing
covariate information, and Ŵ is a diagonal “weight” matrix with elements given by ŵii = p̂i(1− p̂i).
In this expression, p̂i is the predicted probability for the binary event (e.g., disease or deforestation)
for observation i. All else being equal, the variance for β̂ is minimized for p̂i values close to 0.5. For a
sample mostly comprised of controls, p̂i will generally be close to 0, yielding high variances. On the
other hand, as we increase the proportion of cases, p̂i will be closer to 0.5 for more observations,
decreasing the variance.

Intuitively it might seem that selecting samples based on the response variable is not a valid
approach given that the response variable is being purposefully chosen by the modeler. Following
Agresti [36], we show that using a standard logistic regression to analyze data that originates from
a CC design generates highly biased results for the intercept but yields unbiased inference on slope
parameters. Let y indicate whether a subject has the outcome of interest (0 = no, 1 = yes) and let x
denote a covariate. A standard logistic regression assumes that

y ∼ Bern(π) (2)

π = p(y = 1
∣∣∣x) = exp(β0 + β1x)

1 + exp(β0 + β1x)
(3)

where we are interested in estimating the regression parameters β0 and β1. However, when we use
a logistic regression on CC data, we are making inference on p(y = 1

∣∣∣z = 1, x) instead of p(y = 1
∣∣∣x),

where z indicates whether a subject was sampled (0 = no,1 = yes).
To relate p(y = 1

∣∣∣z = 1, x) to our actual quantity of interest p(y = 1
∣∣∣x), note that:

p(y = 1
∣∣∣z = 1, x)

=
p(z = 1

∣∣∣y = 1, x)p(y = 1
∣∣∣x)

p(z = 1
∣∣∣y = 1, x)p(y = 1

∣∣∣x) + p(z = 1
∣∣∣y = 0, x)p(y = 0

∣∣∣x) (4)

Further, note that the sampling probability just depends on the response variable y in a CC study
and not on covariate x (i.e., p(z = 1

∣∣∣y, x) = p(z = 1
∣∣∣y)). Therefore:

p(y = 1
∣∣∣z = 1, x)

=
p(z = 1

∣∣∣y = 1)p(y = 1
∣∣∣x)

p(z = 1
∣∣∣y = 1)p(y = 1

∣∣∣x) + p(z = 1
∣∣∣y = 0)p(y = 0

∣∣∣x)
=

p1p(y = 1
∣∣∣x)

p1p(y = 1
∣∣∣x) + p0p(y = 0

∣∣∣x)
(5)

where p1 = p(z = 1
∣∣∣y = 1) denotes the probability of sampling a case whereas p0 = p(z = 1

∣∣∣y = 0)

denotes the probability of sampling a control. After substituting p(y = 1
∣∣∣x) =

exp(β0+β1x)
1+exp(β0+β1x) and

p(y = 0
∣∣∣x) = 1

1+exp(β0+β1x) and doing some algebraic manipulations, we obtain the following
expression:

p(y = 1
∣∣∣z = 1, x) =

exp
(
β̃0 + β1x

)
exp

(
β̃0 + β1x

)
+ 1

(6)
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where β̃0 = log
( p1

p0

)
+ β0. This expression reveals that the logistic regression applied to data originated

from a CC design will generate valid estimates for the slope coefficient β1 and that the intercept estimate
β̃0 is a biased version of the true intercept β0.

Differently from epidemiological studies, in remote sensing studies, we have data from the entire
population (i.e., pixels). As a result, we can easily remove the bias from the estimated intercept. More
specifically, we can calculate log

( p1
p0

)
, where

p0 =
number o f selected observations where y = 0
overall number o f observations where y = 0

(7)

p1 =
number o f selected observations where y = 1
overall number o f observations where y = 1

(8)

In the CC design, p1 is often equal to 1 as all cases are typically selected whereas p0 will vary
depending on the desired sample size. Using these calculations, we can obtain an unbiased estimate
of the true intercept β0 with the expression β0 = β̃0 − log

( p1
p0

)
. Note that these derivations and results

are valid for logistic regression models regardless of the number of covariates. This is an important
observation because it reveals that these equations can be readily applied to logistic regression models
that allow for nonlinear relationships through the addition of multiple basis functions (e.g., splines or
wavelets) such as generalized additive models (GAMs) [37]. Finally, note that the validity of these
results rests on the implicit assumption that logistic regression models and their associated assumptions
(e.g., logistic link and conditional independence) are reasonable for the data being analyzed.

2.1.2. Prediction Based on Case-Control Data

An apparent limitation of the results described above is that they only pertain to logistic regression
type models, precluding the correction of the biases introduced by the CC approach when using other
types of models (e.g., probit regression models, random forest, and neural networks). However, our
results are more general and are valid for other types of models as long as these models are able to
provide consistent estimates of p(y = 1

∣∣∣z = 1, x). Assuming that data are sampled using a CC approach
where p0 and p1 are known, it is possible to calculate p(y = 1

∣∣∣x). As derived in Equation 5, recall that

p(y = 1
∣∣∣z = 1, x) =

p1p(y = 1
∣∣∣x)

p1p(y = 1
∣∣∣x) + p0p(y = 0

∣∣∣x) (9)

where p1 = p(z = 1
∣∣∣y = 1) and p0 = p(z = 1

∣∣∣y = 0). This implies that

p(y = 1
∣∣∣z = 1, x)

p(y = 0
∣∣∣z = 1, x)

=
p1p(y = 1

∣∣∣x)
p0p(y = 0

∣∣∣x) (10)

Recall that p(y = 0
∣∣∣x) = 1− p(y = 1

∣∣∣x). As a result, we have

p(y = 1
∣∣∣x) = p(y = 1

∣∣∣z = 1, x)p0

p(y = 0
∣∣∣z = 1, x)p1 + p(y = 1

∣∣∣z = 1, x)p0
(11)

Equation (11) reveals how probability estimates based on the CC data p(y = 1
∣∣∣z = 1, x) can be

converted to the unbiased probability estimate p(y = 1
∣∣∣x) (i.e., estimates that one would obtain from

a random sample of the data). Assuming p1 = 1, Figure 1 shows the relationship between these
probabilities given by Equation (11) for different values of p0. As expected, this figure reveals that bias
increases as the fraction of observations sampled from the majority class declines (i.e., p0 decreases
from 1 to 0).
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sampling approach p(y = 1
∣∣∣z = 1, x). Assuming p1 = 1, results are shown separately for different

rates of sampling the control cases (i.e., p0, see figure legend). The mathematical expression for this
relationship is given by Equation (11).

2.2. Simulations

We created three sets of simulated data to illustrate the benefits of a CC sampling approach relative
to an RS approach. In the first set, we were interested in comparing parameter estimates from logistic
regression models trained on data sampled according to an RS versus CC sampling approach. To this
end, we generate data by assuming that

yi ∼ Bernoulli
(

exp(β0 + β1xi)

1 + exp(β0 + β1xi)

)
(12)

where we assumed that β0 ∈ {−6,−5, . . . ,−1} and β1 = −2. Different values of β0 were used for each
simulated dataset to vary the proportion of cases. The covariate xi was generated from a uniform
distribution between −1 and 1.

In the second set of simulated data, we were interested in evaluating how well the CC approach
would work, when compared to the RS approach, when used in conjunction with generalized additive
models (GAMs) to capture nonlinear patterns between the response variable and our variable of interest
x1 while simultaneously controlling for the nuisance variable x2. More specifically, we assumed that

yi ∼ Bernoulli
(

exp(β0 + β1 sin(x1i) + β2x2i)

1 + exp(β0 + β1 sin(x1i) + β2x2i)

)
(13)

where x1i is generated from a uniform distribution between 0 and 2π and x2i is generated from a
uniform distribution between −1 and 1. Here we assumed that β0 ∈ {−5,−4,−3,−2}, β1 = 1, and
β2 = −0.1. Again, each value of β0 corresponds to a different proportion of cases in the simulated
datasets. GAMs were fit using the mgcv package in R [37].
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In the third set of simulated data, we generated data based on a complex relationship between
p(yi

∣∣∣x1i, x2i) and the covariates x1i and x2i. The estimation of this probability surface is particularly
challenging because the dataset also contained information on eight additional covariates x3i, . . . , x10i,
making this a more suitable task for very flexible models like random forest. To simulate these data,
we assumed a Gaussian kernel for the success probability πi:

yi ∼ Bernoulli(πi) (14)

πi = exp
(
−

1
2σ2(1− ρ2)

[
x2

i1 − 2ρxi1xi2 + x2
i2

])
(15)

where ρ (set to 0.8) and σ2
∈ {0.1, 0.6, . . . , 2.6} are the correlation and variance parameters, respectively.

For this set of simulations, we varied the proportion of cases by varying the value of σ2. All covariates
were generated from uniform distributions between -3 and 3. The goal of this set of simulated data was
to determine if the random forest model would better estimate the Gaussian probability surface if data
were sampled using a CC approach when compared to an RS approach. It is important to note that
throughout this article we used the random forest regression (fit with the R package randomForest [38])
rather than the random forest classification algorithm. The reason for this is that the conditional
probability estimates provided by the random forest classification algorithm might not be consistent
whereas those generated by the random forest regression applied to binary data coded as 0 or 1 are
known to be consistent [39].

We generated 100,000 observations for each parameter setting (i.e., for each β0 or σ2 value). The RS
approach consisted of randomly sampling 10,000 observations, regardless of their yi values. On the
other hand, in the CC approach, we included all observations for which yi = 1. If there were more than
5000 such observations, we randomly selected only 5000 observations for which yi = 1. We randomly
selected observations for which yi = 0, such that the overall number of observations was equal to
10,000, ensuring that both RS and CC datasets were of the same size. We then fitted the models on data
from each approach (CC and RS) and stored these results. This was performed 100 times for each set of
simulation parameters to capture the variability in the estimated parameters and relationships.

2.3. Case Study on Deforestation in the Amazon Region

The Amazon region has been widely acknowledged for its remarkable biological and cultural
diversity [40] and for its role in regulating global biogeochemical and atmospheric cycles [41–43]. At the
same time, the region has been increasingly under pressure by large-scale infrastructure development
projects (e.g., paving of existing roads and construction of new roads, hydroelectric dams, and energy
transmission lines) [44–46]. Over the past few decades, tree clearing in the region has already removed
15% of the forest [47]. Importantly, there has been a recent surge in forest fires and deforestation in the
Brazilian Amazon region. The number of active fires in August 2019 was nearly three times higher than
in August 2018, and over 9500 km2 of forest were lost between August 2018 and July 2019, resulting
in the highest annual loss since 2008 [48]. In this context, it is critical to develop methods to better
understand the spatial scale of the deforestation impact associated with infrastructure projects and
improve predictions of future deforestation hotspots.

We focus on modeling deforestation risk in a tri-national frontier in the Amazon. More specifically,
we study how the recent paving of the Inter-Oceanic Highway influences deforestation in the region
where Peru, Brazil, and Bolivia meet, known as the MAP frontier (Madre de Dios, Acre, and Pando).
In 2005, Madre de Dios, Acre, and Pando had approximately 94%, 82%, and 97% of forest cover,
respectively [20]. We selected two originally unpaved road segments that were almost completely
forested in 1986 (i.e., 0.3%–0.6% of the area deforested) and that were relatively far from cities and
towns (>10 km). One road segment is located in Madre de Dios, in southeastern Peru, and was paved
between 2006 and 2010 (the road segment within the red polygon at left, Figure 2). The other road
segment is located in Pando, in northern Bolivia (the road segment within the red polygon at right,
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Figure 2), a region regarded as the last frontier of intact forest in the Bolivian lowlands [49]. This road
segment remained unpaved throughout the entire study period (i.e., 1986–2010).

Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 20 

 

other road segment is located in Pando, in northern Bolivia (the road segment within the red polygon 
at right, Figure 2), a region regarded as the last frontier of intact forest in the Bolivian lowlands [49]. 
This road segment remained unpaved throughout the entire study period (i.e., 1986–2010).  

 
Figure 2. Map of the selected road segments, superimposed on deforestation maps at the beginning 
and end of the study period (1986 and 2010, respectively). Inset displays the approximate location of 
the Brazil, Peru, and Bolivia tri-national region. Tick marks show WGS84 UTM Zone 19S projected 
coordinates. White areas in the background correspond to clouds, water, or shadows that were 
removed. 

Figure 2. Map of the selected road segments, superimposed on deforestation maps at the beginning
and end of the study period (1986 and 2010, respectively). Inset displays the approximate location of
the Brazil, Peru, and Bolivia tri-national region. Tick marks show WGS84 UTM Zone 19S projected
coordinates. White areas in the background correspond to clouds, water, or shadows that were removed.
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The forest/nonforest classification used Landsat images (4 and 5 TM and 7 ETM+) of the area from
1986, 1991, 1996, 2000, 2005, and 2010. Atmospheric and seasonal difference corrections were applied;
all images were georeferenced to less than 15 m error and mosaicked; and clouds, shadows, and
water were removed with a Principal Component Analysis (PCA) image differencing and thresholding
method. Mosaics were classified using a rule-based classifier (Compumine and ERDAS Knowledge
Engineer), using an 85/15 split sample to train and test the decision trees. Covariates for the classification
included bands 4, 5, and 7; tasseled cap brightness, greenness and wetness indices; a mid-infrared index
and a 3 × 3 moving window calculation of image variance to measure texture, helpful to classify forest
and non-forest areas. Classification accuracy for the 2005 mosaic was 87.85% based on field data and
97.96% based on ASTER imagery. Additional details regarding this classification can be found in [20].
Information regarding the location of communities, towns, and roads, including the status and timing
of road paving, were collected via fieldwork that included interviews with local leaders and long-time
residents [50]. Because roads typically increase deforestation rate within 5.5 km from the road [19],
we relied on data within 10 km of these road segments to ensure that all the deforestation effects of
these road segments were captured (red polygons in Figure 2). Within this buffer area, encompassing a
region of approximately 6500 km2, the proportion of deforested pixels in the data used for modeling
varied from 0.3% to 4.4% (Table 1).

Table 1. Percentage of deforested pixels for each year and road segment.

Year Road Paved after 2005 Unpaved Road

1991 1.3 0.5
1996 2.0 0.3
2000 2.9 1.2
2005 2.5 1.3
2010 4.4 3.8

2.3.1. Inference on the Effect of Road Proximity and Road Paving on Deforestation Risk

Despite the relatively small study area, there were still too many pixels (7.2 million) for our
statistical analysis. Therefore, we relied on a CC sampling approach to subsample these pixels by
choosing a total of 500,000 pixels in each year and each road segment. For this subsampling, we focused
only on pixels that were susceptible to deforestation (i.e., pixels that were forested in the previous time
step). Because the goal in this section is to infer the effect of proximity to road and the effect of road
paving on deforestation risk, we relied on GAMs. More specifically, we assumed that the deforestation
status of pixel i at time t yit (0 = forested, 1 = deforested) arises from a Bernoulli distribution with
deforestation probability given by πit:

yit ∼ Bernoulli(πit) (16)

πit =
exp

(
β̃0t + β1tpi(t−1) + f Road

t

(
DRoad

i

)
+ f Commun

t

(
DCommun

i

))
1 + exp

(
β̃0t + β1tpi(t−1) + f Road

t

(
DRoad

i

)
+ f Commun

t

(
DCommun

i

)) (17)

where DRoad
i and DCommun

i are the distances from pixel i to the nearest road and community, respectively,
and f Road

t and f Commun
t are the corresponding smooth functions based on thin-plate splines. In this

equation, the spatially contagious effect of deforestation [51] is accounted for by the term pi(t−1),
which is the proportion of the 8 nearest neighbor pixels that were not forested in the previous year.
The subscript t in the smooth functions and parameters emphasize that separate GAM models were fit
for each year.
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2.3.2. Predicting Deforestation Risk

In this section, we rely on machine learning methods to predict deforestation. More specifically,
based on the deforestation data from the MAP frontier region, we used two approaches to assess if
the random forest trained with CC data yields better predictions when compared to the same model
trained with RS data. The first procedure evaluated predictive ability by relying on a standard 10-fold
cross-validation approach. In this approach, we randomly divided the data into 10 non-overlapping
parts, where one part was reserved to evaluate out-of-sample predictive skill and 9 parts were available
as training data. Based on the observations that were available for training, we sampled 100,000 pixels
for each year, either using the RS or the CC approach, and used these data to train our random forest
model. Then, the trained models were used to predict the deforestation status of the withheld data.

The second procedure evaluated predictive ability by training the model on present deforestation
data and using this model to predict future deforestation. More specifically, we first trained our models
using predictor variables from 1986 and deforestation status information from 1991. Then, we used
this model together with predictor variables from 1991 to predict deforestation status in 1996. Similarly,
we also trained our models on predictor variables from 2000 and deforestation status information from
2005. Then, we used this model together with predictor variables from 2005 to predict deforestation
status in 2010. To fit these models, we sampled 100,000 pixels from the training data using either
the RS or the CC approach. Finally, predictions were made on a random sample of 500,000 pixels.
This procedure was repeated 10 times for predicting deforestation in 1996 and 10 times for predicting
deforestation in 2010.

For both prediction exercises, predictor variables consisted of distances to the nearest road
segment, community and town, the proportion of neighboring deforested pixels at the previous time
step, and the latitude and longitude coordinates of the pixel. Only pixels susceptible to deforestation
(i.e., that were forested in the previous time step) were used to train and validate the model. Similar
to the simulated data example, we rely on the random forest regression algorithm, instead of the
usual classification random forest, because it has been shown that this regression approach generates
consistent probability estimates [39]. Finally, to compare model results, we calculate the log-likelihood
of the withheld data under the assumption that the binary deforestation status observations come
from a Bernoulli distribution with the estimated success probability. Models that result in higher
log-likelihood have higher out-of-sample predictive skill.

3. Results

3.1. Simulations

Based on the first set of simulated data, which was focused on estimating parameters from the
logistic regression, we found that fitting the model to data sampled using a CC approach yields
unbiased estimates for β1. Furthermore, after correcting for the bias in the estimated intercept, we
found that it is possible to generate reliable inference for β0 as well (Figure 3). Importantly, we found
that the CC approach generally results in less variable β0 and β1 estimates when compared to the RS
approach, with increasingly better results when compared to RS as the proportion of cases decreases
(i.e., for smaller true β0).
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Figure 3. Data sampled using a case-control (CC) approach yielded unbiased estimates of logistic
regression parameters (intercept β0 and slope β1) and will generally yield more precise estimates when
compared to data sampled using a random sampling (RS) approach. Panels (a) and (b) display the
estimated intercepts and slope parameters, respectively. True parameter values are represented by
thick horizontal red lines and estimated parameters based on simulated datasets originating from the
RS and CC control approaches are shown with black and blue boxplots, respectively. The average
proportion of cases in the original dataset before sampling took place is given by the numbers at the
bottom. Results are based on 100 simulated datasets for each value of true β0.

We used GAMs to estimate nonlinear associations in the second set of simulated data. We found
that using data sampled through a CC approach can yield unbiased inference regarding the nonlinear
relationship between the binary response variable y and the predictor x1, while statistically adjusting
for the effect of the nuisance covariate x2. Importantly, we also find that data sampled through a CC
approach yield much more precise inference about this nonlinear relationship than a similarly sized
dataset sampled using the RS approach, particularly as the proportion of cases decreases (i.e., for
smaller and smaller β0; Figure 4).
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Figure 4. A case-control (CC) approach yielded unbiased and more precise inference on the nonlinear
relationship between the probability of the response binary response variable y and the predictor x1

using GAMs. Each panel displays modeling results for data simulated with a particular value of β0. The
number on top of each panel refers to the value for β0 while the proportion of cases prior to sampling
is given between parentheses. For each β0 value, grey and blue polygons represent 95% point-wise
envelopes based on 100 simulated datasets generated through a random sampling (RS) approach or a
CC approach, respectively. The true relationship between p(y = 1

∣∣∣x1, x2 = 0) and x1 is depicted by the
thick red line.

For the third set of simulations, which was focused on predictive skill using random forests, we
found that the mean absolute error between the true and estimated probabilities p(yi = 1

∣∣∣x) was almost
always smaller for results based on the CC versus RS approach for datasets of the same size (Figure 5).
Unadjusted probabilities p(y = 1

∣∣∣z = 1, x) based on the CC data were also substantially worse than
the probabilities estimated based on RS data (results not shown), suggesting that our adjustment to
convert p(y = 1

∣∣∣z = 1, x) to p(y = 1
∣∣∣x) is critical for the generation of well-calibrated probabilities.
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yields better probability estimates when compared to the same model trained with randomly sampled
(RS) data. Data with an increasing prevalence of cases were generated by systematically varying σ2

from 0.1 to 2.6. The mean absolute error was calculated by comparing the estimated probabilities to the
true probabilities and lower values indicate better performance. The displayed results are based on 100
simulated datasets for each value of σ2.

3.2. Case study on Deforestation in the Amazon Region

3.2.1. Modeling the Effect of Proximity to Road and the Effect of Road Paving on Deforestation Risk

We found a clear influence of proximity to the road on the probability of deforestation, as expected
(Figure 6). Interestingly, we also found substantial temporal variation. For example, for the paved road
segment, deforestation probability in 2000 was almost as high as in 2010 despite the road pavement
affecting only this latter year (Figure 6a). Differently from what we originally expected, the road
segment that was never paved tended to have a much higher deforestation probability in 2005 and 2010
when compared to the paved road (Figure 6f,g), after statistically controlling for potential confounders
(e.g., distance to communities). These findings highlight substantial differences between road segments
in terms of the effect of proximity to roads on deforestation probability, suggesting that the chosen
unpaved road segment might not be a reasonable “control” road for the paved road segment.
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Figure 6. Proximity to roads increase deforestation probability, but this relationship varies substantially
from year to year and from one road segment to another in the MAP frontier, southwestern Amazon.
Panels (a) and (b) highlight temporal variability within each road segment while panels (c)–(g) compare
both road segments within individual years. Separate GAM models were fitted to data containing
500,000 pixels for each year and each road segment. To depict the relationship between DRoad

i and
deforestation risk π̂it, we created a dataset in which we systematically varied DRoad

i while keeping pi(t−1)
and DCommun

i fixed to their mean values. We used this dataset, together with the unbiased intercept

β0t = β̃0t − log
( p1t

p0t

)
and the estimated smooth functions, to calculate π̂it.

3.2.2. Predicting Deforestation Risk

The 10-fold cross-validation exercise performed for each year revealed that the random forest
model, trained on CC data and with adjusted deforestation probabilities, consistently yielded better
predictions when compared to the same model trained on RS data (left panel in Figure 7). However,
a better test of predictive skill consists of using models trained on past data to make predictions about
future deforestation. We found that the random forest model trained on CC data using the adjusted
probabilities was also the best performing model in predicting future deforestation in 1996 and 2010
(right panel in Figure 7). In all scenarios, using the adjusted probability for the model fitted to CC data
consistently resulted in better performance when compared to using the raw unadjusted probabilities
from the same model (results not shown), reiterating the importance of our adjustment to obtain
well-calibrated probabilities.

The depiction of the predicted deforestation probabilities reveals a spatially heterogeneous pattern
of deforestation probabilities that is not explained by distance to road alone. For example, the random
forest model identified substantially increased deforestation risk at the southern edge for the road
segment that was paved after 2005, close to the regional capital Puerto Maldonado, a pattern that
is particularly evident in the 2010 predictions (top panels in Figure 8). Similarly, for the unpaved
road segment (bottom panels in Figure 8), aside from the greater deforestation risk in the immediate
vicinity of the road, there was relatively little spatial pattern in 1996 whereas in 2010 there was greater
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deforestation risk in the southeastern edge of this road segment, close to the town of Puerto Rico and
the port town of El Sena.Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 20 
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Figure 7. The random forest model fitted using case-control (CC) data and with adjusted probabilities
(blue boxes) consistently had better performance when compared to the same model fitted to randomly
sampled (RS) data (black boxes). Results from the 10-fold cross-validation exercise and the prediction
of future deforestation are shown in panels (a) and (b), respectively. For each year, 10 different models
were fitted to 10 different samples from the training data containing 100,000 pixels. Higher values for
the log-likelihood indicate better predictive performance.
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UTM Zone 19S projected coordinates. Deforestation probabilities are shown with the background
heat map.

4. Discussion

We have shown how inference and prediction based on massive binary remote sensing data can
be substantially improved by sampling pixels using a CC approach, particularly when the land-use
category of interest (e.g., recently deforested pixels) is rare, if parameters and predictions are adjusted
using the bias-correction equations that we derived (Equations (6) and (11)). More specifically, we show
both with simulations and our case study how the parameters from a semiparametric model based on
logistic regression (i.e., GAMs) can be adjusted to flexibly model the relationship between deforestation
risk and covariates in an unbiased fashion. Finally, we show how predictions are improved when the
deforestation probabilities estimated by machine learning methods (i.e., random forest) are adjusted to
avoid the bias introduced by the CC sampling approach.

Our case study highlighted substantial year-to-year variability regarding the effect of proximity to
roads on deforestation risk. As a result, determining the effect of road paving by making before-and-after
comparisons is challenging. Importantly, our results reveal substantial spatial differences. The paved
road segment in Madre de Dios is to a large extent surrounded by forest concessions for the extraction
of castanha nuts (Bertholletia excelsa), a valuable non-timber forest product, where deforestation is
illegal. Indeed, Perz, et al. [52] reveal that communities in this zone had a much lower deforestation
rate than elsewhere in the region. While the unpaved road segment in Pando also has a high density of
castanha trees, the government of Evo Morales identified this region as appropriate for agricultural
colonization. Furthermore, this area is much closer to the Brazilian frontier and likely suffers from a
greater influence of the Brazilian ranching culture than the paved road segment. As a result, greater
deforestation might have occurred due to greater pasture formation associated with Bolivians adopting
Brazilian ranching practices or Brazilians informally buying lands across the border [53]. Despite the
relatively small region analyzed, this cross-border process, together with differences in land-tenure
(e.g., forest concessions), highlight the complexity associated with understanding how proximity to
roads and road paving influence land-use in this highly dynamic tri-national region.

The importance of increasing the prevalence of the rare category in highly imbalanced data
has long been acknowledged in the literature focused on predictive modeling [24,27–32]. Indeed,
a wide variety of sampling methods have been proposed in the literature to deal with class imbalance,
including the CC approach advocated here as well as random oversampling of instances of the minority
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class (ROS), one-side selection (OSS), cluster-based oversampling (CBOS), Wilson’s editing (WE),
Synthetic Minority Oversampling Technique (SMOTE), and borderline-SMOTE (BSMOTE) [28,29,54–56].
van Hulse et al. [28] performed a comprehensive comparative study of these sampling approaches,
involving 35 different benchmark datasets, seven sampling techniques and 11 commonly used learning
algorithms. In their study, they found that “intelligent” sampling techniques (e.g., SMOTE, BSMOTE,
WE, OSS, and CBOS) often have inferior performance and that CC was overall the best method,
followed by ROS. We experimented with ROS in a preliminary analysis but found that, in the absence
of adjustments similar to the ones we have developed for the CC approach, ROS yields substantially
biased predictions (data not shown). Appropriately accounting for the biases introduced by these
alternative sampling approaches to increase prevalence remains an important challenge [24,33].

Our results illustrate how the biases introduced by the CC approach can be accounted for, and
thus offset, when estimating parameters using logistic regression models. While the reliance on
logistic regression for inference might seem to be an important limitation, we have shown that flexible
modeling frameworks that build off the basic logistic regression structure, such as geospatial models
and GAMs [37,57], can still be successfully used together with our CC methodology. Importantly, we
also show that the CC sampling approach, together with the proposed adjustments to the estimated
probabilities, can lead to improved predictions from a wide range of models as long as these models
are able to provide consistent probability estimates. Examples of machine learning models that have
this characteristic include some versions of random forest, k-nearest neighbors, and support vector
machines [33,39].

5. Conclusions

To our knowledge, this is the first time that bias-correction adjustments for data sampled through a
CC approach have been proposed and used for modeling highly imbalanced land-use data, a common
phenomenon in land science. We have shown the utility of the CC approach over the RS approach in
generating substantially improved inference and predictions. While we focused on the topic of land
cover change, we emphasize that our equations together with the CC sampling approach are applicable
to other domains of inquiry that involve big imbalanced datasets. For example, this methodology
can help scientists better understand the drivers of, and create predictions for, other relatively rare
landscape phenomena, such as remotely sensed fires [58,59] and landslides [60]. In ecology, the
proposed methodology might improve the development of species occurrence maps given that these
maps are based on spatial predictions from species distribution models [31,61]. More generally,
accurate predictions based on large but highly imbalanced data are also needed in fields outside
ecology and land sciences, such as predictions of credit card fraud detection [62] and customers leaving
a company [54]. In short, the proposed equations together with the CC sampling approach will be of
wide use to scientists in multiple fields interested in understanding the drivers of rare outcomes and
predicting them in space and time.
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