
Ecology and Evolution. 2021;00:1–10.	﻿�    |  1www.ecolevol.org

 

Received: 21 October 2020  |  Revised: 26 March 2021  |  Accepted: 7 April 2021

DOI: 10.1002/ece3.7626  

O R I G I N A L  R E S E A R C H

The Latent Dirichlet Allocation model with covariates (LDAcov): 
A case study on the effect of fire on species composition in 
Amazonian forests

Denis Valle1  |   Gilson Shimizu2 |   Rafael Izbicki2 |   Leandro Maracahipes3  |    
Divino Vicente Silverio4  |   Lucas N. Paolucci5 |   Yusuf Jameel1 |   Paulo Brando6

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2021 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

1School of Forest, Fisheries, and Geomatics 
Sciences, University of Florida, Gainesville, 
Florida, USA
2Department of Statistics, Federal 
University of Sao Carlos, Sao Paulo, Brazil
3Instituto de Pesquisa Ambiental da 
Amazonia, Brasilia, Brazil
4Departamento de Biologia, Universidade 
Federal Rural da Amazônia, Capitão Poço, 
Brazil
5Departamento de Biologia Geral, 
Universidade Federal de Viçosa, Viçosa, 
Brazil
6Department of Earth System Science, 
University of California, Irvine, Irvine, 
California, USA

Correspondence
Denis Valle, School of Forest, Fisheries, and 
Geomatics Sciences, University of Florida, 
136 Newins-Ziegler Hall, PO Box 110410, 
Gainesville, FL 32611, USA.
Email: drvalle@ufl.edu

Funding information
National Science Foundation of USA, 
Grant/Award Number: 1458034, 2040819; 
Conselho Nacional de Desenvolvimento 
Científico e Tecnológico, Grant/Award 
Number: 306943/2017-4, 442710/2018-
6 and 441703/2016-0; Coordenação de 
Aperfeiçoamento de Pessoal de Nível 
Superior; National Institute of Food 
and Agriculture, Grant/Award Number: 
1005163; Fundação de Amparo à Pesquisa 
do Estado de São Paulo, Grant/Award 
Number: 2019/11321-9

Abstract
Understanding and predicting the effect of global change phenomena on biodiversity 
is challenging given that biodiversity data are highly multivariate, containing 
information from tens to hundreds of species in any given location and time. The 
Latent Dirichlet Allocation (LDA) model has been recently proposed to decompose 
biodiversity data into latent communities. While LDA is a very useful exploratory tool 
and overcomes several limitations of earlier methods, it has limited inferential and 
predictive skill given that covariates cannot be included in the model. We introduce 
a modified LDA model (called LDAcov) which allows the incorporation of covariates, 
enabling inference on the drivers of change of latent communities, spatial interpolation 
of results, and prediction based on future environmental change scenarios. We show 
with simulated data that our approach to fitting LDAcov is able to estimate well the 
number of groups and all model parameters. We illustrate LDAcov using data from 
two experimental studies on the long-term effects of fire on southeastern Amazonian 
forests in Brazil. Our results reveal that repeated fires can have a strong impact on 
plant assemblages, particularly if fuel is allowed to build up between consecutive 
fires. The effect of fire is exacerbated as distance to the edge of the forest decreases, 
with small-sized species and species with thin bark being impacted the most. These 
results highlight the compounding impacts of multiple fire events and fragmentation, 
a scenario commonly found across the southern edge of Amazon. We believe that 
LDAcov will be of wide interest to scientists studying the effect of global change 
phenomena on biodiversity using high-dimensional datasets. Thus, we developed the 
R package LDAcov to enable the straightforward use of this model.
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1  | INTRODUC TION

Understanding and predicting how species composition has been 
and will be altered by global change phenomena is key to sustain-
ing biodiversity and ecosystem functioning. However, biodiver-
sity data are highly multivariate, containing information on tens to 
hundreds of species in a given location and time (Ramette,  2007; 
Warton et al., 2015). Thus, dimension reduction techniques are re-
quired to generate interpretable findings from these data (McCune 
et  al.,  2002). Clustering and ordination have been the main ap-
proaches in ecology to reduce the dimensionality of biodiversity 
data (Legendre & Legendre, 2012). Clustering approaches have been 
extensively used in Ecology since at least the 1920s (Legendre & 
Legendre, 2012). Although hard-clustering approaches have domi-
nated the field, few ecological theories predict the sharp delineations 
implied by these methods (Legendre & Legendre, 2012). Importantly, 
these hard-clustering methods will assign a given location to a single 
group, limiting the ability of these approaches in detecting gradual 
changes in species composition across environmental gradients.

Differently from cluster analysis, ordination is typically the 
method of choice to identify general gradients in highly multivar-
iate data (Legendre & Legendre,  2012). Unconstrained ordination 
methods (e.g., principal component analysis [PCA], correspondence 
analysis [CA], principal coordinate analysis [PCoA], and nonmetric 
multidimensional scaling [NMDS]) enable the visualization of the 
variability in multivariate data in a space with reduced dimensional-
ity (typically two; Hui et al., 2015), whereas constrained ordination 
methods (e.g., redundancy analysis [RDA] and canonical correspon-
dence analysis [CCA]) allow for statistical testing of environment–
species composition associations (Legendre & Legendre,  2012; 
Ramette, 2007). The main limitations associated with these meth-
ods are the poor interpretability of their results and lack of ability to 
make predictions. Because all the information from ecological data 
is typically condensed into a square dissimilarity matrix prior to the 
analysis, it is challenging to determine how individual species con-
tribute to the final results, hampering the ability to interpret how 
the different axis scores relate to the observed species composition 
at each site. Finally, most cluster and ordination methods used for 
biodiversity research are algorithm-based techniques with no under-
lying statistical model. As a result, few of these methods can be used 
to make predictions and there is often no quantification of uncer-
tainty associated with their results, a critical limitation for inference 
and prediction purposes (Hui et al., 2015).

The Latent Dirichlet Allocation (LDA) model is a type of Bayesian 
mixed-membership model that allows for realistic representation of 
both gradual and sharp changes in species compositions along en-
vironmental gradients (Valle et  al.,  2014). Instead of representing 
biogeographical regions with sharp boundaries, LDA can represent 
biome transition zones and ecotones as mixed-membership areas. 
The ability of LDA to represent the blending of assemblages in these 
transition zones has been shown repeatedly in previous articles 
(Valle et al., 2014, 2018). Importantly, LDA estimates the proportion 
of each group in each sampling unit, a much more straightforward 

quantity to interpret than results from ordination methods (e.g., PCA 
or NMDS scores). LDA models have become increasingly popular, 
being used to model spatial and temporal change in communities for 
a wide range of taxa across a diverse set of systems (Christensen 
et  al.,  2018; Dietzel et  al.,  2019; Knott et  al.,  2019; Muhlfeld 
et al., 2020; Sommeria-Klein et al., 2019; Valle et al., 2014, 2018). 
Unfortunately, despite its usefulness for exploratory analysis, LDA 
is limited in its ability to make inference and predictions given that 
covariates are not included in the model.

The goal of this article is to introduce a modified LDA model that 
allows for inference and prediction on the abundance of individual 
groups. We first describe the model and then, using simulated data, 
we show that the model can retrieve well the true parameter values. 
Finally, we apply the developed model to two experimental stud-
ies on the long-term effects of fire on southeastern Amazonian for-
ests in Brazil. These forests are located in the driest portion of the 
biome and are known to be relatively resistant to a single fire, but are 
dramatically impacted by repeated fires, especially under extreme 
climatic conditions (Balch et al., 2015). Several studies have shown 
that fires cause high tree mortality and significantly impact forest 
structure, diversity, and function (Balch et al., 2011, 2015; Brando 
et al., 2014, 2016; Brando, Silverio, et al., 2019; Nobrega et al., 2019). 
Furthermore, windstorms and drought often exacerbate fire and its 
effects on forests (Brando et al., 2014; Silvério et al., 2019). Acting 
synergistically, these processes induce changes that may ultimately 
lead to the “savannization” of parts of the Amazon (i.e., a collapse of 
tropical rainforests, transforming them into a low-biomass savanna-
like biome) (Nobre et al., 2016). Unfortunately, current understand-
ing of the impact of fire on species composition is still limited, a gap 
that this study aims to help fill.

2  | METHODS

2.1 | Model description

The LDA model with covariates (LDAcov) embeds a negative 
binomial regression within LDA to determine how the number of 
individuals in each group is influenced by covariates. Let nlsk be the 
number of individuals in location l and group k from species s. We 
assume that the number of individuals in location l assigned to group 
k (nl.k) across all species (i.e., nl.k =

∑
S
s= 1

nlsk) is given by a negative 
binomial regression:

where E[nl.k] = exp(xT
l
�k ) and N is a parameter that captures over-

dispersion. Furthermore, �k is a vector of group-specific regression 
parameters and xT

l
 is the location-specific design vector containing a 

leading 1 (for the intercept) and the covariates for location l. Next, we 
assume that:

nl.k ∼ NBinom(exp(xT
l
�k ),N).

[nl1k,…, nlSk] ∼ Multin(nl.k,�k )
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In this expression, �k is a vector of group-specific probabilities 
that sum to one. Each element �ks within this vector describes the 
relative abundance of species s in group k, this way characterizing 
the species composition of this group. Notice that both nlsk and nl.k 
are latent variables. The observations consist of the abundance of 
species s in location l (nls.) given by

We finish specifying our model by adopting the following prior 
distributions for N,�k, and �k:

where T is a diagonal matrix and 0 < 𝛾 < 1.

2.2 | Gibbs sampler

Let zil denote the group membership of individual i in location l, 
where nlsk =

∑ nl..
i= 1

I(zil = k, yil = s). To fit this model, we rely on a 
Gibbs sampler in which we iteratively sample each �k, �k, and zil
. Below, we specify the full conditional distribution for each of 
these parameters.

The full conditional distribution for �k is given by:

To sample this vector of parameters, we rely on a slice-sampler 
algorithm (Neal, 2003) applied sequentially to each element of this 
vector.

The full conditional distribution for N is given by:

To sample this parameter, we also rely on a slice-sampler.
Because of conditional conjugacy, the full conditional distribu-

tion for �k is a Dirichlet distribution, given by:

where n.sk is the number of individuals from species s in group k across 
all locations (i.e., n.sk =

∑
lnlsk).

Finally, as detailed in Appendix  S1, conditional on yil = s, zil is 
drawn from a categorical distribution with the following probability:

where n(− i)

l.k
 is the number of individuals in location l and group k after 

removing the ith individual. Similarly, n(− i)

lsk
 is the number of individuals 

in location l, group k, from species s after removing the ith individual. 
Finally, plk = N∕(N + exp(xT

l
�k )).

2.3 | Model fitting details

To aid the convergence of this model, it is critical for it to be initialized 
with sensible starting values. Furthermore, this model requires that 
the number of groups be a priori specified.

To obtain sensible starting values and to determine the optimal 
number of groups, we adopt a two-stage approach. We first fit the 
data using an unconstrained LDA model (i.e., a model that does not 
include covariates and that does not have an embedded regression 
structure). This model identifies the optimal number of groups using 
a Bayesian nonparametric prior (i.e., the truncated stick-breaking 
prior) and is described in detail in Albuquerque et al. (2019). Notice 
that, differently from an intercept-only model, the unconstrained 
LDA model is very flexible because it estimates the proportion of 
each group at each location as separate parameters. Assuming the 
number of groups identified by the first model, we then use the nlsk 
values provided by the unconstrained LDA model to initialize our 
model. We also initialize the regression coefficients �k by fitting a 
separate negative binomial regression for nl.k from each group.

Differently from a standard regression in which the response 
variable is observed, fitting a regression model within an unsuper-
vised method like LDA is challenging because the response variable 
is latent and has to be estimated together with the regression param-
eters. As a result, a misspecified regression model can negatively im-
pact the (latent) response variable nl.k, potentially mischaracterizing 
the identified communities. For this reason, we decided to use the 
posterior distribution of �k from the unconstrained LDA model as 
the posterior distribution from the LDAcov model. This way, even if 
none of the covariates are informative or if the model is misspecified, 
the communities identified by the unconstrained LDA model would 
still be the same as those identified by the LDAcov model. However, 
notice that, despite not estimating �k, LDAcov still has to estimate 
nlsk and all regression parameters. This two-stage approach to fitting 
LDAcov is illustrated in Figure 1.

Our simulation results indicate that this two-stage strategy is 
successful in retrieving the true values for nlsk and �k and that using 
the posterior distribution of �k from the unconstrained LDA model 
consistently leads to better results than estimating �k within LDAcov 
(see Section 3). Nevertheless, our R package called LDAcov (available 

nls. =

K∑

k=1

nlsk

N ∼ Unif(0, 100)

�k ∼ Dirichlet(�1)

�k ∼ N(0, T)

p(�k |…) ∝

[
∏

l

NBinom(nl.k |exp
(
x
T

l
�k

)
,N)

]
N(�k |0, T)

p(N |…) ∝

[
∏

k

∏

l

NBinom(nl.k |exp(xTl �k ),N)

]
Unif(N |0, 100)

p(�k|…)∝

[
∏

l

Multinom
([
nl1k,…, nlSk

]
|nl.k,�k

)
]
Dirichlet(�k|�)

=Dirichlet
([
n.1k+� ,…, n.Sk+�

])

p(zil = k �yil = s,…) =

(n( − i)

l.k
+N)

(n( − i)

lsk
+ 1)

�ks(1 − plk)

∑
K
c= 1

(n( − i)

l.c
+N)

(n( − i)

lsc
+ 1)

�cs(1 − plc)
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at https://github.com/gilso​nshim​izu/ldacov and described in detail 
in Appendix S2) enables the user to choose between estimating �k 
or relying on the posterior distribution of �k from the unconstrained 
LDA model.

2.4 | Simulations

We simulate data to evaluate the ability of LDAcov to estimate the 
number of individuals in each group k and location l (nl.k), the species 
composition (�k), and the regression parameters �k of each group 
k. To illustrate how well the proposed method works in different 
settings, we varied the number of plots (set to 20, 40, 80, and 500) 
and the number of species (set to 80, 160, and 320), resulting in 12 
scenarios. After removing rare species, the final number of species 
in these datasets was equal to 45, 65, and 92, respectively. To create 
the simulated datasets, we assumed that there were 3 groups and 
that each group was strongly influenced by just one out of the three 
covariates. To implement this assumption, the slope parameters for 
each group were equal to 2 for one covariate and 0 for the remaining 
covariates. Covariate values were simulated independently from a 
uniform distribution between −1 and 1.

2.5 | Field data

We rely on datasets that arise from two experimental forest fires. 
Both experiments are located in a transitional forest in Mato Grosso, 
Brazil, in the southern part of the Amazon Basin (13°04′S, 52°23′W). 
In the first experiment, three 50 ha (50 × 1,000 m) plots bordering 
a crop field were established in 2004 (“Big-plot” experiment from 
hereafter). In each plot, transects of 500 m in length and 20 m in 
width were created at 10, 30, 100, 250, 500, and 750 m from the 
forest edge and all trees with diameter at breast height (i.e., 1.3 m 
from the ground; dbh) greater than 20  cm were measured within 
these transects. One of these plots was left unburned (i.e., Control), 
one plot was burned thrice (2004, 2007, and 2010; hereafter “B3yr” 

treatment) and the remaining plot was burned yearly from 2004 
to 2010, except in 2008 (hereafter “B1yr” treatment). Trees were 
measured in 2004, 2008, 2010, 2012, and 2016, always prior to the 
experimental fires. Additional details regarding this experiment are 
available in Balch et al. (2011).

The second experiment evaluated the effect of fuel addition 
and fire frequency on fire intensity and tree mortality. This exper-
iment followed a randomized block design, with a total of 6 blocks 
and 4 plots of 40 m × 40 m within each block (“Block” experiment 
from hereafter). All trees with dbh greater than 5 cm were measured 
within these plots. Treatments consisted of unburned plots (control 
area), plots burned once in 2016 under natural conditions (i.e., no 
fuel addition), plots burned twice (2013 and 2016) under natural 
conditions, and plots burned twice (2013 and 2016) with fuel addi-
tion (50% increase in fine fuel loads) only before the 2013 fire. In this 
experiment, trees were measured yearly from 2011 to 2018, except 
for 2017, always prior to the experimental fires. Additional details 
regarding this experiment are available in Brando et al. (2016).

2.6 | Data analysis for the fire experiments

For the “Big-plot” experiment, we adopted the following regression 
structure for the number of individuals in each transect l, group k, 
and year t (n(t)

l.k
):

In this expression, �0p[l]k is a plot-specific intercept and �1k,…, �8k 
are the regression slope parameters for group k. As for the covariates, 
B3yrlt and B1yrlt are binary variables denoting if transect l in year t 
received the low or high fire frequency treatments, respectively; DEl 

n
(t)

l.k
∼ NBinom(�(t)

lk
,N)

E[n(t)
l.k
]

=�
(t)

lk

=exp(�0p[l]k+�1kB3yrlt+�2kB1yrlt+�3kDEl+�4kYt+�5k(Yt×B3yrlt)

+�6k(Yt×B1yrlt)+�7k(DEl×B3yrlt)+�8k(DEl×B1yrlt))

F I G U R E  1   Illustration of the two-stage approach to fitting LDAcov. First, an unconstrained LDA model is fit to abundance data nls. to estimate 
the optimal number of groups K and the species composition of each group �k. Then, LDAcov is fitted using covariate information xl and abundance 
data nls, yielding estimates of the regression coefficients �k, the overdispersion parameter N, and the number of individuals in each species, location, 
and group nlsk. Descriptions for the data and parameters are displayed in blue and orange, respectively, and models have gray boxes

https://github.com/gilsonshimizu/ldacov
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is the distance of transect l to the edge of the forest and Yt is the year 
at time t. Finally, Yt × B3yrlt and Yt × B1yrlt are interaction terms be-
tween year and treatments, allowing for the impact of fires to change 
with time. Similarly, DEl × B3yrlt and DEl × B1yrlt are interaction terms 
between distance to edge and treatments, allowing for the effect of 
fire to be different depending on the distance to the forest edge.

For the “Block” experiment, we adopted the following regression 
structure:

where �0l is a plot-specific intercept. In this expression, Fire1lt, Fire2lt, 
and FAlt are binary variables denoting if plot l in year t was burned once, 
was burned twice, and if fuel was added, respectively.

For all models, slope parameters are deemed to be statistically sig-
nificant and highly statistically significant if min (p(𝛽p < 0), p(𝛽p > 0)) is 
smaller than 0.05 and 0.01, respectively. Finally, we define the char-
acteristic species in each group as those that are more than twice as 
abundant in the focus group when compared to the other groups.

3  | RESULTS

3.1 | Simulation results

We find that our first-stage model (i.e., the unconstrained LDA 
model) was able to correctly identify the existence of three groups 
(out of a maximum of 10 groups) of individuals in all 12 scenarios 
(Appendix S3). Furthermore, the second-stage model (i.e., LDAcov) 
was able to estimate well all the parameters across all scenarios, 
including the number of individuals in each group and location 
nl.k (Figure  2) and the coefficients �k (Appendix  S3). Importantly, 
our two-stage approach consistently performed better than the 
approach that fits all parameters at once (Appendix S3).

3.2 | Big-plot experiment

The first-stage model identified five main groups, representing ap-
proximately 97% of all the trees. Based on LDAcov with 5 groups, 
we found several of the covariates to be statistically significant 
(Table 1). For example, we found that as distance to edge increased, 

n
(t)

l.k
∼ NBinom(�(t)

lk
,N)

E[n(t)
l.k
] = �

(t)

lk
= exp(�0l + �1Fire1lt + �2Fire2lt + �3FAlt)

F I G U R E  2   LDAcov is able to estimate well the number of individuals in each group and location (nl.k) for different scenarios regarding 
number of species and locations. True and estimated values for nl.k are displayed in the x- and y-axes, respectively. The 1:1 line is shown 
in red. Left to right panels display results of scenarios where the number of species is equal to 45, 65, and 92, respectively. Top to bottom 
panels display results of scenarios where the number of sites is equal to 20, 40, 80, and 500 locations, respectively
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the abundance of groups 1, 2, 3, and 5 tended to increase whereas 
the abundance of group 4 decreased. These patterns suggest that 
group 4 is more characteristic of forest edges whereas the other 
groups are much more common in the forest interior. This is clearly 
depicted by comparing the control results for the forest edge to 
those from the forest interior (Figure 3).

The fire treatments tended to decrease the abundance of all 
groups (Table 1). The exception to this pattern was the weak effect 
of the annual fires (B1yr) on groups 1 and 2 (Table 1). Parameter esti-
mates for B3yr were larger in magnitude than those for B1yr, except 
for group 3, indicating that fire in the B3yr treatment had a more 
severe negative impact on the abundance of groups when compared 
to B1yr, probably a consequence of substantial fuel buildup within 
these 3-year time intervals.

Whenever significant, the interaction between distance to for-
est edge and fire was positive, suggesting that the negative effects 
of fire were less pronounced the farther trees were from the edge 
of the forest. These results reveal the synergistic effect between 
fragmentation and fire effects on tree mortality. Finally, the abun-
dance of all groups was generally declining with time even in the 
control group but, as revealed by the significant interaction with fire 
for many of these groups, this decline with time was substantially ex-
acerbated by fire. Interestingly, the parameters associated with the 
interaction between year and B3yr were consistently significant and 
greater in magnitude when compared to the equivalent parameters 
for B1yr, reinforcing the hypothesis that infrequent fires can be more 
damaging than annual fires (Balch et al., 2008).

The characteristic species in each group conform to what we ex-
pected (see details in Appendix S4). For instance, among the char-
acteristic species of each group, the highest proportion of pioneer 
species was found in the group that was more abundant at the edge 
of the forest (i.e., group 4). In particular, three of the characteristic 

Variable

Group

1 2 3 4 5

Distance to edge 0.19* 0.51** 0.33** −0.54** 0.38**

B3yr (fire every 
3 years)

−0.41* −0.38* −0.58** −0.8** −0.69**

B1yr (fire almost 
every year)

−0.02 −0.08 −0.64** −0.64** −0.41*

Year 0.52** 0.51** 0.29* 0.4* 0

Interaction: 
Edge × B3yr

0.03 0.05 −0.21 0.07 −0.06

Interaction: 
Edge × B1yr

−0.59** −0.46** −0.67** −0.69** −0.78**

Interaction: 
Year × B3yr

−0.16 −0.28* −0.63** −0.3 −0.44*

Interaction: 
Year × B1yr

−0.23** −0.31** −0.28** −0.11 −0.19*

Note: The symbols * and ** represent significant and highly significant results, respectively.

TA B L E  1   Estimated slope parameters 
for each group

F I G U R E  3   Model predictions of the number of trees per 
transect for each group and each treatment by the end of the 
“Big-plot” experiment (i.e., 2016). These predictions were made for 
the plot with B3yr. Left and right panels correspond to predictions 
for the forest edge and forest interior transects, respectively. 
Treatments refer to no fire (‘Control’), fire approx. every 3 years 
(‘B3yr’), and fire approx. every year (‘B1yr’). Error bars are 95% 
credible intervals
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species of group 4 were Mabea fistulifera, Cecropia palmate, and 
Schefflera morototoni, all of which are commonly found along forest 
edges, in early successional states or in open habitats (Lorenzi, 2000; 
Sposito & Santos,  2001). Similarly, the characteristic species of 
groups 1 and 2 tended to have thicker bark than the characteristic 
species from groups 3–5 (see Appendix  S4), potentially explaining 
why these two groups were more resistant to annual fires.

3.3 | “Block” experiment

The model without any covariates also identified five main groups, 
representing approximately 95% of all the trees. Based on 5 groups, 
the LDAcov model revealed that, while the first fire seems to have 
decreased the abundance across all groups, these effects were not 
significant. On the other hand, the parameters associated with the 
second fire were generally more negative than those from the first 
fire, with significant effects observed for groups 1, 2, and 5 (Table 2). 
These results suggest that the second fire was substantially more 
severe than the first fire, perhaps as a result of trees already being 
weakened by the first fire. Finally, fuel addition generally tended to 
have a negative effect on abundance, but this effect was only statis-
tically significant for group 5 (Figure 4).

The characteristic species in group 5 were all understory species 
(i.e., species that tended to have individuals with smaller diameter), 
which might explain why this was the only group that was affected 
by both the second fire and fuel addition (see details in Appendix S4). 
Furthermore, similar to the results found for the “Big-plot” exper-
iment, the characteristic species of groups 3 and 4 tended to have 
thicker bark when compared to the characteristic species of the other 
groups, helping to explain why these two groups were not signifi-
cantly impacted by any of the fires or fuel addition (see Appendix S4).

4  | DISCUSSION

In this article, we have described LDAcov, a novel model that can pro-
vide inference and prediction by embedding a regression structure 
within the standard LDA model. We illustrate the use of this model 
on data from two fire experiments in the Brazilian Amazon, ena-
bling inference on how fragmentation and fire jointly affect species 
composition of these forests. It is important to note that, because 
LDAcov is a type of unsupervised method, it is much more challeng-
ing to evaluate the quality of its results when compared to supervised 
methods (James et al., 2013). For this reason, we validate LDAcov by 
determining how well its results based on the fire experiments data 
are corroborated by earlier findings using different methods.

4.1 | Fire effects on plant assemblages

Based on the data from the “Big-plot” experiment, our finding of in-
creased impact on species composition associated with B3yr when 

compared to B1yr is corroborated by two important processes stud-
ied at the same experiment. The longer intervals between fires in the 
B3yr treatment enabled fuel buildup (Balch et al., 2015), and two of 
the fire events on the B3yr coincided with drought years (2007 and 
2010) (Brando et  al.,  2014). More fuel in drier conditions resulted 
in increased burned area and higher fire intensity, particularly along 
the forest edge neighboring an agricultural field, ultimately leading 
to higher postfire tree mortality, higher losses in aboveground live 
biomass (Brando et al., 2014) and increased grass invasion (Silverio 
et al., 2013). Based on data from the “Block” experiment, we find that 
fuel addition tends to decrease the abundance of all groups, but that 
this effect was only significant for a single group with understory 

TA B L E  2   Estimated slope parameters for each group

Parameter

Group

1 2 3 4 5

Intercept 4.53** 4.03** 3.31** 2.39** 2.85**

First fire −0.13 −0.14 −0.06 −0.07 −0.15

Second fire −0.31* −0.29* −0.28 −0.24 −0.37*

Fuel addition −0.12 −0.01 0 −0.23 −0.45**

Note: Significant and highly significant results are emphasized * and **, 
respectively.

F I G U R E  4   Predicted number of trees per plot for different 
numbers of fire (x-axis), with (red) and without fuel addition (green). 
Predictions were made for the baseline plot (i.e., plot 1). Error bars 
are 95% credible intervals. Notice that we assume that fuel addition 
does not alter the control treatment. For this reason, results for 
zero fires with and without fuel addition are identical
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characteristic species. These results are corroborated by the finding 
that fuel addition resulted in the increased burned area and flame 
height, but not fireline intensity (Brando et al., 2016). Nevertheless, 
this experiment clearly reveals that, while a single understory fire 
might not substantially change species abundance, subsequent fires 
can have strong impact on plant assemblages, especially for small-
sized species and species with thin bark. Taken together, these re-
sults reveal the compounding impacts of multiple fire events and 
fragmentation, a scenario commonly found across the southern 
edge of Amazon (Brando, Paolucci, et al., 2019). The burned area in 
the region is projected to double in the next three decades (Brando 
et al., 2020), and the differential impacts of fire along forest edges 
on forest species composition can contribute to the degradation of 
these forests.

4.2 | Comparison to other methods

One model that also incorporates covariates within LDA is called 
Structural Topic Model (STM). In STMs, a multinomial regression 
is embedded within LDA to enable the use of covariates (Mimno & 
McCallum, 2008; Roberts et al., 2016). LDAcov differs from STM in 
that it is specifically focused on modeling the number of individuals 
in each group rather than the proportion/prevalence of individuals in 
each group. This is an important feature for two reasons. First, mode-
ling the number of individuals in each group enables straightforward 
interpretation of regression coefficients, an important characteristic 
for statistical inference. On the other hand, the coefficients from the 
multinomial logistic regression adopted by STMs are challenging to 
interpret as the relationship between the prevalence of a given group 
and a particular covariate depends on the slope parameter of all the 
other groups (see Appendix S5). Second, the number of individuals in 
each group is often the primary focus of ecological interest and can 
reveal effects that might be missed by modeling prevalence instead 
of abundance. For example, if fire reduces the abundance of trees in 
all groups equally, then the multinomial logistic regression described 
above would not detect a significant effect of fire because the preva-
lence of each group would remain the same. Similarly, if fire increases 
the prevalence of group 1 relative to group 2, it will not be clear if this 
happened because fire decreased the abundance of group 2 with no 
effect on group 1 or because fire increased the abundance of group 
1 with no effect on group 2.

Other methods also exist that cluster plots and allow for covari-
ates (Hill et al., 2020; Woolley et al., 2019). For example, a model 
that is somewhat similar to LDAcov is called the Regions of Common 
Profile (RCP) (Foster et al., 2017; Lyons et al., 2017). This is a type 
of mixture-of-regression model which groups sites that have similar 
species composition (hence the name regions of common profile). 
Within this model, a multinomial logistic regression enables covari-
ates to influence the probability of each site being associated with a 
particular group. A key difference between LDAcov and RCP is that 
a site can only belong to a single group in RCP whereas LDAcov en-
ables a plot to be comprised of multiple groups. This is important 

because, as illustrated in Valle et al. (2018), it implies that RCP will 
require more groups to fit the data equally well as LDA with fewer 
groups. Indeed, we have observed exactly this when we fitted RCP 
models (using the R package “RCPmod”) to our simulated data, re-
gardless if the optimal number of groups was selected using AIC 
or BIC (see Appendix  S3). Another important difference between 
LDAcov and RCP refers to the interpretability of the regression co-
efficients. The RCP model, similar to STM, relies on a multinomial 
logistic regression model and, as a result, its regression parameters 
are more challenging to interpret (see Appendix S5).

Another promising dimension reduction model is called Species 
Archetype Models (SAMs) (Dunstan et  al.,  2011, 2013). In these 
models, species are grouped according to how they respond to the 
covariates. We relied on the R package “ecomix” to fit SAMs. Within 
this package, first the optimal number of groups is identified using 
BIC and then uncertainty on regression parameters is estimated 
using a bootstrap approach based on the optimal model. Our experi-
ence has been that it can sometimes be challenging to fit these mod-
els. For example, to fit the “big plot” data, we varied the number of 
groups from 2 to 15 and we used the function “species_mix.multifit” 
to fit SAM 10 times for each number of groups. According to BIC, the 
optimal number of groups for these data was equal to 7. However, 
when examining more closely the results for the model fitted with 7 
groups, we found that 3 groups were empty, suggesting that the al-
gorithm did not find a good solution and resulting in numerical issues 
when estimating the uncertainty in the regression coefficients (e.g., 
standard errors and p-values equal to zero).

Our perspective is that the development of novel multispecies 
models is an area of active research and that many of the existing 
models (e.g., SAMs and RCPs) can generate valuable insights despite 
having limitations. Importantly, we believe that LDAcov will be a useful 
addition to toolkit of ecologists interested in making community-level 
inference. Future work on LDAcov could more explicitly incorporate 
spatial correlation, a feature that very few multispecies models in-
clude (see review in Norberg et al., 2019). Furthermore, the addition 
of species-specific dispersion parameters in LDAcov (a feature that 
is implemented in a straightforward fashion in SAM) could be useful 
to allow for differences in spatial aggregation of different species. 
Finally, enabling LDAcov to accommodate for sampling artifacts (e.g., 
survey method, sampling effort, and season of data collection; similar 
to RCP) would probably be a very useful future extension for LDAcov.

Determining how anthropogenic stressors (e.g., timber log-
ging, fire, and hunting) impact biodiversity is critical for an accu-
rate picture of ecosystems services (e.g., carbon storage and water 
provisioning). However, assessing these impacts is particularly chal-
lenging for biodiversity-rich system because of the large number of 
species, requiring methods that can reduce the dimensionality of the 
data while also making a statistically valid inference. The LDAcov 
was created to address this need. Together with an R package, we 
have added a tutorial providing step-by-step instructions regard-
ing how to use LDAcov and interpret its results (Appendix S2). We 
believe that the proposed model will be useful for scientists inter-
ested in understanding and predicting how species composition of 
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biodiversity-rich ecosystems changes along environmental gradi-
ents, particularly for gradients that arise from large-scale anthropo-
genic stressors (e.g., climate change, fire, forest fragmentation, and 
saltwater intrusion).
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